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Summary

In this paper, we consider one-equation models of turbulence with turbulent-viscosity v; = {Vk (€ =length
scale, k =mean turbulent kinetic energy). The following system of two parabolic equations represents a
simplified model for the turbulent flow of an incompressible fluid through a pipe with cross-section Q ¢ R?:

ou

o~ div (Vkvu) = 0, ok _ div((u + Vi) Vk) = VkIVuP - kVk in - Qx]0, T,

ot

where u = const > 0. Here, the differential equation on the left is degenerate due to the coefficient Vk.
We prove the existence of a weak solution (u, k) of this system under homogeneous boundary conditions
and initial conditions u(0) = uy and k(0) = ky. The pair (&, k) exhibits the phenomenon of turbulence as

follows. If
Y
f f [Vul>dxdt > 0,
0 Q

then there exists a set Q* ¢ Qx]0, T[ such that

mesQ* >0, k>0 a.e. in Q.

Key words: Degenerate parabolic equations (35K65), weak solutions (35D30), turbulent-vicosity
model (76F99), local energy equality (35D99)

Riassunto

In questo articolo consideriamo modelli di turbolenza ad un’equazione con viscosita di turbolenza v; = £Vk
(¢ =scala di lunghezza, k =energia cinetica media di turbolenza). Il seguente sistema di due equazioni
paraboliche rappresenta un modello semplificato per il flusso turbolento di un fluido incomprimibile at-
traverso un tubo con sezione trasversale Q ¢ R?:

% — div (VkVu) = 0, % — div((u + Vi)Vk) = VkIVuP - kVk in - Qx]0, T,

dove u = cost > 0. Qui I’equazione differenziale a sinistra & degenere a causa del coefficiente Vk.

"Lecture given on the occasion of the 70th birthday of Mario Marino, 3-4 May 2013, Catania
*e-mail: jnaumann@math.hu-berlin.de
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Noi proviamo I’esistenza di una soluzione debole (1, k) di questo sistema con condizioni al bordo
omogenee e condizioni iniziali u(0) = ug e k(0) = kq. Tale soluzione (u, k) mostra il fenomeno di turbolenza
nel seguente modo. Se

T
f f \Vul*dxdt > 0,
0 Q

allora esiste un insieme Q* c Qx]0, T'[ tale che

misQ* >0, k>0 gq.o.in Q%

Parole chiave: Equazioni paraboliche degeneri (35K65), soluzioni deboli (35D30), modello di
viscosita di turbolenza (76F99), uguaglianza di energia locale (35D99)
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1. Introduction

1.1 Turbulent-viscosity models

Let Q c R? denote a domain, let 0 < 7 < +o0 and set Q7 := Qx]0, T[. We consider the following
system of PDEs

divu =0 in Qrp, (1.1)
aa—’: + (- Vyu = div((v+ NOD@) - Vp + f in Qr, (1.2)
Ok . , kVk o

o tu Vk=div ((u + ENVE) + VK D) — —— in Or, (1.3)

where the unknowns are

u = (u1, up, u3) mean velocity field,
p = modified mean pressure,

k = mean turbulent kinetic energy.



J. Naumann: Degenerate parabolic problems 20

If (u, p, k) is a solution to (1.1)—(1.3) then the turbulent motion of the fluid is characterized by the
velocity field U = u +u, where u denotes the fluctuation of the motion. The mean turbulent kinetic
energy is then specified by

1= |
k= Elul2 ( = mean of §|u|2)-
Further notations in (1.2) and (1.3) are

D(u) = (D;j@)}ij=125 = (Vu+(Vu)"), |D@)* = D;ju)D;j(u)’
f = given external force

vy =const >0, u=const>0.

The turbulent-viscosity vy of the fluid is modelled by the Boussinesq hypothesis
yr = €Vk, €= turbulent length scale (mixing length).

In (1.3), the term f\/lle(u)l2 represents the rate of transferring turbulent kinetic energy from
the mean flow to the turbulence, while the sink term —k—f models the decay of energy (dissipation)
of the turbulence. The characteristic length scale £ depends on the flow under consideration and
its Reynolds number Re. Thus, £ is an unspecified part of (1.1)—(1.3).

For a detailed discussion of mean-flow equations and turbulent-viscosity models we refer to [16],

[17], [23]. [ |
In case of the fully developed turbulence, the coefficients v = u = % can be neglected. Then
(1.2), (1.3) take the form
0
a—’: + - Vu = div(¢VkD@) - Vp+ f in Or, (1.4)
‘;—]t‘ +u - Vk = div (¢VAVK) + (VKD @)* - % in Or, (1.5)

in Qr, respectively. System (1.1), (1.4), (1.5) is usually called Prandtl’s (1945) one-equation
model of turbulence. We notice that equ. (1.5) has been directly postulated by Prandtl [20] for one
space dimension (cf. also [1], [18], [19] for more details). Moreover, (1.4) does not explicitly
occur in [20]. Indeed, Prandtl only mentioned that the rate of strain T = ¢ \/%D(u) can be “deter-
mined by the velocity field u from the Euler equation to which the term div (5\/§D(u)) is added”
(cf. [20; p. 11]); notice that 7;;D;;j(u) = f\/%lD(u)lz). [ |

Remark 1.1 Let Q be bounded. The following assumptions on the turbulent length scale ¢ include
many examples which are widely used in the literature:

LeC(Q); €x)>0 YxeQ, x)=0 Vxed. (1.6)
The function
£(x) = ko(dist(x, 9Q))?, x€Q (ko = const > 0, = const > 0)

clearly obeys (1.6) (cf., e. g., [16; pp. 302-306, 378-389 for @ = 1]).

Remark 1.2 A partial differential equation that governs the turbulent length scale £, has been de-
rived in [21].

! Throughout the paper a repeated index implies summation over 1,2, 3.
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1.2 Turbulent motion through a pipe

Let Qo c R? be a bounded domain, and define Q := Qyx]0, a[ (= ’pipe with cross-section {0y and
length 0 < a < 400 ). Put

x=,x3), X =(x1,x0)€Q), x3¢€]0,q[.

Let f = 0. In Qr = Qx]0,T[ we consider a flow that is driven by a pressure difference
between Qg X {0} (= inlet ) and Qg X {a} (= outlet ), i. e., more specifically

p(x, 1) = —g(®)x3, g >0 givenon ]0,TI.
This leads to unknown functions (u, k) of the structure

u(x,t) =(0,0,usz(x’, 1), k(x,t) =k(x',1) ((x,1) € Or).
It follows

divu=0, (u-Viu=0, u-Vk=0,

0 0 30x,u3 0
1
D@y =| 0 0 3duis|. ID@P =zVusf, Vp= [ 0 ]
10gus 30nuz 0 —8
In addition, we assume that the turbulent length scale £ depends on x” € Qg only, i. e.

LeC(Qy); €(xX)>0 YxX eQy €x)=0 Yx Q. (1.7)

Thus, with the above assumptions on # and k, system (1.2), (1.3) takes the form

1
% = 5 div (v + ViVuz) + ¢ in - Qox]0, 71, (1.8)
k 1 kVk
% = div ((u + £Vi)VK) + Eé’\/l;Wung - 7\/_ in Qyx]0,TI, (1.9)
respectively. Analogously, system (1.4), (1.5) reads
ous 1 . :
— = 5div (eVkVus) + g in - Qox]0, T, (1.10)
ok 1 kvVk
— = div (¢VkVK) + 5 VK Vus | - kVk in Qux]0,T[, (1.11)
ot 2 l
respectively. |

Remark 1.3 (degenerate parabolic equations) Since
V=0 in Qyelo,T[, ¢Vk=0 on 8Qx[0,T],

the differential operator div (EVkV(+)) on the right hand side of (1.10) and (1.11) is degenerated.
The weak formulation of (1.10), (1.11) therefore has to make use of Sobolev spaces with weight
. In addition, due to the physical meaning of the turbulence model under consideration, the weak
solution (u3, k) to (1.10), (1.11) must verify the condition

T
kVk
ffidxdt<+oo.
0 Jo, €
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1.3 A model problem

Throughout the remainder of the paper, let Q ¢ R? be a bounded domain with Lipschitz boundary
0Q. We consider the following system of PDEs for the unknown scalar functions « and &

0
a—”t‘ ~div(VkVu) =g in Or, (1.12)
% — div ((u + Vo) Vk) = ViIVul* - kVk in Qr, (1.13)

where g is a function defined on Qr, and ¢ = const > 0. in (1.12), the differential operator
div (VkV(-)) is degenerated. With regard to the nonlinear terms, (1.12), (1.13), system involves the
same mathematical properties as system (1.8) (with v = 0), (1.9) does. Moreover, the proof of our
main theorem (see Section 4) continues to hold for (1.8) (v = 0), (1.9) with turbulent length scales
¢ which satisfy (1.7) and, in addition,

fdx’
< 4o00.
Q

We complete (1.12), (1.13) by the boundary and initial conditions

Ok
on’
k =

u=0, =0 on 0Qx][0,T], (1.14)

ko on Qx{0}, (1.15)

u = up,

where n’ denotes the unit normal to Q. The following figure illustrates the meaning of boundary
conditions (1.14) with respect to the boundary of a pipe with cross-section Q.

T3 A

Qx{a}l n=(0,0,1)

// 2 T eax0.
QX{O}Q—T

n=(0,0,-1)

Figure 1: The pipe Qx]0, a[”

Let n = (n;, ny, n3) denote the exterior unit normal to d(Qx]0, a[). For & € R?, define &, := & — (¢ - n)n. Let be
u(x,t) = (0,0,us3(x’, 1)) as above (x = (x', x3)), where x’ € Q, x3 €]0,a[, and ¢ €]0, T'[. Then, for every ¢ €]0, T'[,

u-n=0, u,=u on 0Qx]|0,al,

u-n==xu3, u,=0 on Qx{0}resp. Qx{a}.
Moreover,

(D@n), =0 9Qx[0,a] o ‘;”: -0 on 4Q,

where n’ = (n, ny). Thus, the boundary condition a—u}, = 0 on 9Q is equivalent to the Navier-slip condition on
n

ok
the vector field u(x, 1) = (0,0, u3(x’, 1)) on 9Q X [0, a]. The boundary condition P = 0 on 02 means that there
is no flux of k through 9Q. u
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In [9; pp.203-204], the author considers a system of PDEs for two scalar functions which is
more complex than (1.12), (1.13), but does not include a degenerate parabolic equation like (1.12)
in [4], [8] the authors establish the existence of weak solutions to a general class of turbulent-
viscosity models in three dimensions of space with coefficients vy = vy + v(k) (vg = const > 0),
where 0 < v(k) < cok® for all k € [0, +co[ (a > O appropriate).

2. Weak solutions of the model problem

2.1 Weak formulation

Let X denote a real normed vector space with norm | - |, let X* be the dual of X and let (x*, x)x+ x
denote the dual pairing between x* € X* and x € X. The symbol C,,([0, T]; X) stands for the
vector space of all mappings u : [0, 7] — X such that the function ¢ — (x*, x)x- x is continuous
on [0, T'] whenever x* € X*. Next, by L”(0,7; X) (1 < p < +00) we denote the vector space of all
equivalence classes of measurable mappings u : [0, T] — X such that the function ¢ — [u(?)|x is in
LP(0,T) (see, e.g. [2; chap. III, § 3; chap. IV, § 3], [S]).

Let WP(Q) (1 < p < +00) denote the usual Sobolev space. Define

Wy 2(Q) := {u e W"P(Q); u =0 a.e. ondQ,

WhP(Q) = dualof WyP(Q) (1 <p<+oo,p = L).
p—1
[ |
We introduce the notion of weak solution to (1.12)—(1.15). For the sake of simplicity of our
presentation, in what follows we assume g = 0.

Definition Let ug € L*(Q) and ko € L'(Q). The pair (u, k) is called weak solution to (1.12)—(1.15)

if
u e L0, T; LX) N L*(0, T; Wy *(Q)), 2.1)
ke L®0,T;L"Q) N LY*Qr), k>0 ae inQr, (2.2)
Vk € [LP(Qp)] (1 <p< g) kK'?Vk e [LYQ)* (1 < q < p), (2.3)
kK'4*Vu e [L2(01))? (2.4)
and

_f M@ + f kl/ZVu Vv = f up(x)v(x, 0)dx 2
QT (92‘ QT Q

2.5
2 1,4 v 5 (&3)
Vv e L7(0,T; Wy " (Q)) such that o e L“(QOr), v(,T)=0,
0
- f K2+ | @k Vk- Vg = f ko(x)p(x, 0)dx + f (K'21Vul = %)
;O Or Q or
VoeCl(0,T; W9 (Q) suchthat ¢(-,T) =0, (2.6)
(qas in(2.3), q = L)
q-—1

2 For notational simplicity, in what follows we write fE f in place of fE fdxdt (E CRY).
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We notice that the integrability of Vk in (2.3) is well-known from the theory of parabolic

d+?2
equations with right hand side in L' (i.e., 1<p< Ti1 where d =dimension of space). The

integrability of k'/?Vk in (2.3) follows from an a-priori estimate on the appropriate solution (i, k)
which will be deduced in Section4.1. It is easy to see that (2.1)—(2.4) guarantee the integrability
of the functions under the integral signs of the integral relations in (2.5) and (2.6) as well.

To motivate the integral relation in (2.5), we consider a sufficiently regular solution (u, k)
(k > 0in Q) of (1.12)—(1.15). Let v be a smooth function in Q x [0, T'] such that v = 0 on
0Q x [0,7T] and v(x, T) = 0 for all x € Q. We multiply each term in (1.12) by v, integrate over Qr

ok
and integrate by parts. This gives (2.5). Observing the boundary condition Frie 0on 0Qx[0,T],
n

we deduce (2.6) from (1.13) by an analogous reasoning.

2.2 Existence of 7-derivatives

Let (u, k) be a weak solution to (1.12)—(1.15). We show that both u# and k have a first order -
derivative in the sense of distributions of 10, 7| into W~14/3(Q) and (W'-7 (Q))* (g as in (2.3)),
respectively.

To this end, we introduce some notations. Let X and Y be real normed spaces such that

X CY continuously.

Letve LP(0,T;X)and w € L(0,T;Y) (1 < p,q < +o0) satisfy

T T
f v(iOa(t)dt = — f wt)a' (Hdt in Y, YaeCS10,TI).
0 0

Then w is called the derivative (of order 1) of v in sense of distributions of 10, T[ into Y and denoted
by V' (see, e. g., [3; Appendice], [5]). The element v’ is uniquely determined

The following result is well-known. For every v € LP(0, T; X) with distributional derivative
Vv e L1900, T;Y) (1 < p,qg < +00) there exists v € C([0,T]; Y) such that

W) =v(t) fora.e te|0,T],
2.7
Micqo.riyy < (Voo + 1V llaw)) > (¢ = const independent of v).

Next, let H be a real Hilbert space with scalar product (-, ). We suppose that X ¢ H contin-
uously. Identifying H with its dual H*, it follows

X C H=H"cX" continuously, (h,&)y =<h,&xx Yhe HVéeX

Let X be reflexive and let 1 < p,q < +oo. Let v € LP(0, T; X). Then the equivalence of 1° and 2°
is readily seen.

1° Aw e L1(0, T; X*) such that

T T
f v (t)dt = f wa()dt in X', Vac CC1 (0, TD
0 0

(i. e., v possesses the distributional derivative v/ = —w);

2° Aw e L1(0, T; X*) such that

T T
[ ooromawdr= [ o1 et veex. vaeclaorD. @8
0 0

* In what follows, we briefly write || - ||o(x) in place of || - ||ze.7:x)-
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Finally, for later use (Section 3) we notice the following elementary result. Let 1 < p < +oo. For
every v € LP(0, T; X) with distributional derivative v/ € L7 (0, T; X*) there exists u € C([0, T]; H)
such that

() = u(®) fora.e. t € [0,TY,  |ligorpm < 2dllraol Iy - (2.9)

|
We are now in a position to prove the following

Proposition 1 Let (u, k) be a weak solution of (1.12)—(1.15). Then there exist the distributional
derivatives

W € L2, T; W43 Q)), kK eL'0,T;(W-9 Q)" (2.10)
and there holds
u € Cy([0,T1; L7(Q),  u(0) = ug in L*(Q),
W (1), E)yyram yrs + f K'2Vu(r) - Védx = 0 (2.11)
W o

fora.e.te[0,T], Vé&eWyHQ),

ke C([0,T1; (W7 (Q))"),  k(0) = ko in (W (Q)), *

K@iy o + f (u + k') Vk(r) - Vidx =
Q (2.12)

- f (kl/z(t)lvu(mz - k3/2(t))77dx fora.e.te[0,T], Vnpe W7 (Q)
Q

(gasin(2.3)).

By the separability of the Sobolev space W'-P(Q), the sets of measure zero of those ¢ € [0, 7]
for which the functional relations in (2.11) and (2.12) fail, do not depend on ¢ € Wé’4(Q) and

n € Wha(Q), respectively.
Proof of Proposition I Observing (2.2) we obtain for all £ € Wé’4(Q) anda.e. r€[0,T]

<

' f k'2(0)Vu(r) - Védx
Q

1/4 1/2 2 12 4 14
<KL fg KRONuPdx) fQ vertdx)

By (2.4), the function ¢ — fQ KY2(6)|Vu(r)|Pdx is in L*(0, T). Hence, there exists w € L*(0, T; W—1-4/3(Q))
such that

f K'2(0)Vu(t) - Védx = (w(t), €)yy-1.45 wpe forae. r€[0,T]
o :

(notice that the measurability of w : [0,T] — W~L43(Q) follows from Pettis’ theorem).

4 Here we have identified k, € L'(Q) with the element in (W% (Q))* (again denoted by ky) which is defined by
<k0,77>(wl»q’)*.wlvq’ = fgkondx Vne Wl'q/(Q)»
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Let @ € C*([0, T]), supp(a) C]O, T[. The function v(x,t) = é(x)a(t) (x,t) € Qx]0, T[) being
admissible in (2.5), the integral relation takes the form

T T
fo (u(t), )zt (1)t = fo WE) 01 12O

i.e. (2.8) holds with X = Wé’4(Q),H = L2(Q). Hence, the distributional derivative u/(= —w) €
L*(0, T; W=1-43(Q)) exists (cf. (2.10)), and the functional relation in (2.11) holds for a.e. ¢ €
[0,T]. This follows by a routine argument. Moreover, there exists a representative of u (not
relabelled) that is in C([0, T]; W~ 14/3(Q)) (cf. (2.7)). Thus, by (2.1), u € C,,([0, T]; L*(Q)).

We prove that u(0) = ug in L*(Q). To this end, let fe W$’4(Q) and fix e C 1(10, 1) such that
{(T)=0and £(0) = 1. Then

T T
[ 00 an e+ [ .02 0t = ~a0) 1 213)
On the other hand, inserting the function (x, ) — &(x){(¢) ((x,1) € Qx [0, T]) into (2.5) it follows

T T
- f w0), £),2¢ (D1 + f ( f k”z(t)Vu(t)-Vfdx)dt: f wokdx. (2.14)
0 0 Q Q

Combining (2.11), (2.13) and (2.14) we find
f upédx = f u(x,0)édx, &€ WyH(Q).
Q o)
Whence the claim.
To establish the existence of kK’ € L2(0, T; (W4 (Q))*) (g as in (2.3)), we notice that for every
ne W4 (Q), from (2.3) and (2.4) it follows

<

' f (1 + K'2(0))Vk(0) - Vidx — f (K2 @)IVu@® - K2(0) Jndx
Q Q

s( fg ((/J+kl/z(t))IVk(t)l)qu)l/q( fQ |Vn|q'dx)1/q,+

+ f (K2 @IVu@)P + &2 (1))dx max )
Q Q

for a.e. t € [0, T]. Hence, there exists z € L'(0, T; (whe (Q))*) such that

f (1 + K'2(0))Vk(2) - Vdx - f (K2 @IVu@? = 20 ndx = (0 ny ey i
Q Q

fora.e.t€[0,T].

By an analogous reasoning as above, we obtain the existence of the distributional derivative
K e LY0,T; W-9(Q))") (thus k € C([0,T]; (W4 (Q))*)) and the function relation in (2.12)
holds. In the same way as above, from (2.6) we conclude that (k(0), n)(Wl,qr)*’Wl,qf = fQ kondx for
ally e Wh'(Q).

2.3 An existence theorem

The main result of our paper is the following
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Theorem Let uy € L®(Q) and let kg € L'(Q), ko > 0 a. e. in Q. Then there exists a pair (u, k) such

that
e Cy([0, T1; LA(Q) N LA0,T; Wy 2(Q), o’ € L20,T; W 473()), (2.15)
keL‘”(O,T;Ll(Q))m( ﬂ LP(QT)), k>0 ae in Or,
1<p<176
Vi e ﬂ[Lq(Q 2, f ﬂq V5 €elo, 1] 21
. Tl H QT(1+k)l+6— PR (2.16)
I<g<3
k'?Vk e m [Lr(QT)]2 (¢ = const independent of  and u)
1<r<§
ke () Cao, 7w @), Ke () L', T W@, (2.17)
l<r<$ l<r<$
kK'4Vu e [L2(01))? (2.18)
and

W (0. Oy gyt + f K2 (0)Vu(r)-Védx =0 fora.e. t€[0,T], Y&e WyHQ), (2.19)
’ Q

for some 1 < s < 8

ORI fg (1 + K'72(0))Vii(t) - Vdx = (2.20)

= f (k1/2(t)|Vu(t)|2 _ k3/2(t))77dx fora.e. t€[0,T], Vne WS’S'(Q)
Q

u©)=uy in L*Q), k(0)=ko in W 5Q). (2.21)
In addition, the pair (u, k) satisfies,
min {O, ess infuo} < u < max {O, ess supuo} a.e.in Qr, (2.22)
Q Q
1 1
—fuz(x,t)a’x+f kl/ZIVulzs—fu(Z)(x)dx, (2.23)
2 Jo ) 2 Jo
1 1
f (52, ) + k(x,0))dx + f B < f (5u3(x) + ko(x))dx, (2.24)
Q 2 . [e) 2
IVul? <2 f k'2(x, Hdx + f k (2.25)
O Q ;

fora.e. te€[0,T].

The pair (u, k) obtained in the theorem above, exhibits the phenomenon of turbulence as fol-
lows.

Corollary (k > 0 a. e. on a set of positive measure). Let be (u, k) as in the Theorem. Suppose that

f [Vul?> > 0.
Or

Then there exists a set Q* C Qr such that

mesQ* >0, k>0 ae on Q.



J. Naumann: Degenerate parabolic problems 28

Proof Define aq := er |Vul?. Fix t, €]0, T[ such that

T
ffwmzs@.
n Ja 2

Integration of (2.25) over [t., T] gives

o T T
—(T—t*)sf fk”2+f (f k)dt.
2 1. Q 1y [}
4mesQ [ \I12
aos( mes fk) +2f .
T -1 or or

Whence the claim.

Thus,

3. Existence of an approximate solution (u, k,.)

In this section, we modify model problem (1.12)—(1.15) at two points. Firstly, by a standard cut-
off method, we bound the coefficients Vk which occur in the differential operators on the left hand
side of (1.12) and (1.13). Secondly, by adding the term —&div (|Vul"~>Vu) (¢ > 0,p > 4) to the
left hand side of (1.13) we make the model problem coercive. The existence of a weak solution to
this modified problem is then easily proved by methods of abstract evolution equations. The proof
of our existence theorem for weak solutions to (1.12)—(1.15) is then carried out by the passage to
the limit £ — 0.

The existence of a weak solution of problems of the type (1.1)—(1.3) with uniformly bounded
coeflicients in place of (v + t’\/%) and (u + é’\/%) in (1.2) and (1.3), respectively, has been proved in
[11], [12]. The weak solution obtained in these works, however, does verify the scalar equation of
type (1.3) with a defect measure.

To begin with, we define

1
[T]e: min{g,‘r}, >0, 0<7<+00,

Fix any p > 4. Given & > 0, we consider the following problem: find a pair of functions (u, k)
such that k, > 0 in Qr, and

Oug

e q; 1/2 -2 _ :

o~ div (e + [kel)'? + &lVue??)Vus) =0 in Qr, 3.1)

% — div (4 + (& + [kele) ?)Vke) + ks + K% = (2 + [kel) VU in Q7. (32)
ke

ue =0, =0 on 8Qx[0,T], (3.3)
on’

ue =g, ke=ky on Qx{0), (3.4)

where n’ denotes the unit normal to dQ. Formally, problem (3.1)-(3.4) turns into (1.12)—(1.15)
when £ — 0. We now prove the existence of a weak solution of (3.1)—(3.4).

Proposition 2 (existence of an approximate solution) Let ugy € WLP(Q) and ko € W-2(Q), kg = 0
a. e. in Q. Then, for every € > 0 there exists a pair (ug, kg) such that

us € C([0, TT; L2(Q) N LP(O, T; Wy P (Q),  ul, € L' (0, T; W7 (Q)), (3.5)
ke € C([0, T1; L*(Q)) N LP(0, T; W2(Q)), k. € L*(0,T; (Wh2(Q))"), (3.6)

min {O, min uo} < ug < max {0, max uo} a.e.in Qr, k.>0a.e in QOr 3.7
o) Q
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and

UL V) yor gy + f (& + k(1) + £l Vue (D" Vuts(t) - Vvdx = 0
wir ¥

(3.8)
fora.e.1€[0,T], Yve W, Q),
(kL (1), @) w12y w12 + fg (1 + (& + [ke(0)]0)?)Vie(t) - Vipdx
vo [ tpdrs [ K0 = [ (o4 kL) WuoPeds G
Q Q Q
fora.e.t€[0,T], VoeWh2(Q),
us(0) =uy in LAQ), k:0)=ky in L*Q). (3.10)

Before turning to the proof of Proposition 2 we introduce some notations. Put
V = LP(0,T; Wy ") x LA0, T; Wh2(Q)).

By (u,k), (v,¢),... we denote the elements of V. The space V is reflexive with respect to the
norm

1/2
. 2 2
1 Ol 2= (1 0+ Kl )

The dual space V* is linearly isometric to L” (0, T; W17 (Q)) x L*(0, T; (W'-2(Q))*). Identifying
this space with V*, we obtain, for all («*, k*) € V* and all (v, p) € V,

£ k £ k /
1 Kl = (11 gy + IR W2 pny) s
<(l/t*, k*), (V’ ‘70)>(V*,(V = <u*’ V>Lp'(W—l,p’)’Lp(W(§~l’) + <k*’ ¢>L2((W1*2)*),L2(W1’2)'
Next, we define
D(L) := {(u, k) € ViAW) € L (0, T; W7/ (@) x L*(0, T; (W (Q)"),

u(0) = 0, k(0) = 0},
L k)= @ K), (k) € D(L).

We furnish D(L) with the usual graph norm
G, gy == NG, Olly + 1L, ©lly-.
The following results are well-known:

D(L) cV continuously, densely
L:D(L) - V" s alinear, maximal monotone operator
(see, e. g., [10; Chap. 3]).

Proof of Proposition 2 For T € R, define 7+ := max{z, 0}, 7~ := min{r, 0}. Given (u, k) € D(L),
put

ﬁ=u+uo, k=k+k0.
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Then, for € > 0 we define a mapping A, : D(L) — V* by

A oDy = [ (o 1)1 + ef¥aP )77 Vo

Or
+ f (1 + (e + [K"10)"?)Vk - Vipdx + f (ek + &K - f (& + (K1) AVite.
Or Or Or
(k) € DL), (v, k)€ V.

We are now going to show that the mapping A, verifies the conditions (i), (ii) and (iii) below.
(1) Az maps bounded sets in D(L) into bounded sets in V*. More precisely, for all (u, k) € V,

1
ALt Ol < (@t R)lly) + 1L Rl (3.11)

where ¥, : [0, +00[—]0, +0oo[ is a non-decreasing function that is bounded on bounded intervals
of [0, +oo[, and W.(1) = +o0 as e — 0, T €]0, +oo[.
To see this, it is evidently enough to observe that

’f ’k\+|’k\|1/2¢
Or

T
in3/2
< ARy [ WoOlhyrace

— 1
< (€l .2y + Il Jlellizann ).

(by (2.9) with X = W2(Q), H = L*(Q)), and

1\1/2 5
S (8 + E) ”VM”[L4(QT)]2||SD||L2(W1'2)'

’f (& + [k 1) 1 Vul?p
or

(i) A, is coercive, i. e.

<A8(u7 k)’ (u7 k)>(V*,(V
(e, ©)llv

Indeed, by the definition of A,

— +oo as (u,k) € D(L), |l(u,k)|lyy — +oo. (3.12)

(A(u, k), (, k) p =

- f (& + [K*10)"/% + &|ValP Vi - Vu + f (1 + (& + (K1) /) Vi - Vk
Or Or

o [ (FAREE [ o 1 PR
Or Or

It suffices to estimate the third and the fourth integral from below. We have

f(g’/S+’/€+|’1€|‘/2)kzgf k2+sf kko — | %k
Or Or Or Or

3¢
> — K> — c(e)
4 Or
and
B P R . f -2 [ var - e,
Or 4 Or 2 Or

where the constants c(g) depend on ||kg|[y 1.2 (recall p > 4). Whence (3.12).

5 Without any further reference, in what follows we denote by ¢ constants which may change their numerical value
from line to line.
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(iii) A is pseudo-monotone (with respect to weakly convergent sequences in D([)), i.e.
for every sequence ((uj, k;)) C D(L) such that

(), kj) — (u, k) weakly in V, L(uj, k;) — L(u, k) weakly in V*, and
lim sup(A (g, k), e, k) =, K))ay-p < 0 (3.13)
there exists a subsequence (not relabelled) such that
lim inf(Az(uj, k), (uj, kj) — (v, @)=y 2
(3.14)
> (As(u, k), (u, k) = (v, @) v Y (v,0) €V.

Before turning to the proof of (3.14) we notice that the convergence of the sequence ((k;)) implies
the existence of a subsequence (not relabelled) such that

ki — k stronglyin L>(Qr) and a.e.inQr as j— +oo (3.15)
(see [10; Chap. 1, Thm. 5.1], [22; Cor. 4]). Next, given r > 2, there holds
(2=l n) - E—m) 2 aolé —nl" VéEneR, (3.16)

where @ = const > 0 depends on r and n only. We obtain

a/osf [V(u; —w)l? <
Or

< | e+ V@ - 0P + & f (IVaj|P=2 vt — |ValP > Va) - V(i - )
Or Or

+ f (1 + (e + K1) )V (k; - TP
Or
= | (e+[k"1)">Va; - V(uj — u) + f (1 + (& + (K1) )V - Vikj = ) + B
Or Or
= (A, kj), Wjs kj) = (1, k) y + Bej + Coj (3.17)

(recall uj —u =1 — 1, kj —k = k; — k). Observing that Vii; — Vi weakly in [LP(Q7)]2, Vk; — Vk
weakly in [L2(O71)]? as Jj — +oo, and (3.15) we easily obtain

limBS,]‘ = limC&j =0.

Thus, from (3.13) and (3.17) it follows
apelim supf [V(uj — w)l? < limsup (<ﬂ8(“j’ kj), (uj, kj) = (u, k)= v + B, j + C&J') <0.
Or
Hence, by going to a subsequence if necessary,

Vu; — Vu strongly in [LP(Q7)]> anda.e.in Qr as j— +oo. (3.18)

We are now in a position to prove (3.14). Let (v,¢) € V. To form the liminf in (3.14), we
firstly notice that from (3.17) it follows

lim | (VP> Vu; - \ValP~>Va) - V(i - ) = 0.
Oor



J. Naumann: Degenerate parabolic problems 32

Thus, by Minty’s trick,
liminf | |V lPVa; - Vu;—v) > | [ValP >V - V(u - v).
Or

(see, e. g., [10; Chap. 2, Prop. 2.5]). Secondly, observing that
(e + (K51 *ViT; — (e + (K1) Vi weaklyin  [L*(Qr)T,
—~ 1/2_—~ — 1/2_—~ .
(+ e+ K510)?) VA — (u+ (e + [K71)"?) "Vk  weakly in  [LA(Q)]

as j — +oo, we find

liminf | (e+[k[1)"?Vii;- V- v) > | (e+[kT1)"Va- Vu-v),
Or Or

liminff (1 + (e + [K[1o)2)VE; - V(k; - @) > f (1 + (e + K1)V - V(k - ).
Or Or
Thirdly, taking into account (3.15) and (3.18) we obtain by routine arguments
tim [ (R + BRI )k -9 = [ (R TRk - 0,
Or Or

lim | (e+ k1) PIVIP(k; - @) = | (e + (K1) 2 IVal (k - ).
Or Oor

Whence (3.14).
The mapping A, thus verifies the assumptions of [10; Chap. 3, Thm. 1.2]. Hence, for every
g > 0, there exists (ug, k) € D(L) such that

L, ke) + A, ke) = (0,0) in - V* (3.19)

We define u, = ug + uy, ke := 758 + ko. Then (3.19) is equivalent to

U0, V)1 i + f (6 + 1 1) + elVue (P )Vue(r) - Vvdx = 0
o Q (3.20)

fora.e.r€[0,T], Vve Wy (Q),

(o (1), @) w12 w2 + fQ (1 + (& + [k (010) %) Ve(t) - Vepdx

- f (ke + KL Olko(0]' 1 )pdx = f (& + [k (01) Vi) (3.21)
Q Q

fora.e. 1 €[0,T], Y¢eWh3(Q).
To prove the bounds on u, (cf. (3.7)), put

A, = min {O, essginf uo}, A" = max {0, ess;up uo}

Then, fora.e. 1 € [0,T], v = (us(-.1) = A.) € Wy'P(Q). From (3.19) it follows that
(ug (D), (ug(t) = ﬁ*)_)W,l,p/’Wé,p <0 fora.e.t€[0,7T]

Thus u; — A, > 0 a.e. in Q7. Analogously, u, —A* < 0 a.e. in Qr. Finally, the function ¢ = k_ (-, )
being admissible in (3.21) we find

<k;(l),k;(f)>(wl,2)*,wl,2 <0 fora.e. re[0,T],

and therefore k., > O a.e. in Or.
The pair (i, k) verifies (3.5)—(3.10) of Proposition 2.
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4. Proof of the existence theorem

4.1 A-priori estimates

Let ug € L®(Q) and let kg € L'(Q), ko > 0 a.e. in Q. Fix p > 4. For every & > 0, there exists
e € Wy P(Q) and ko € W'3(Q) such that

min {0, ess inf uo} < ugp < max {O, ess sup uo}, koe >0 a.e.in Q,
Q Q

uog — g in L2(Q), kos — ko in L'(Q) as &— 0.

Then from Proposition 2 it follows that there exists a pair (u, k) that verifies (3.5)—(3.10) with
ug e and ko, in place of up and kg, respectively.

For notational simplicity, throughout the present section we omit the index & at u, and k..
Without any further reference, in all of Section4.1,let0 < ¢ < 1.

(1) We insert v = u(-, 1) (0 <t <7T) into (3.8) and integrate over [0, f]. It follows

max fuz(x,t)dx+f ((a+[k]8)1/2+5|Vu|”_2)|Vu|2séfu(%(x)dx. 4.1
Q Oor 2 Ja

1€[0,T]
(i) Let 0 < 6 < 1. We define

1
$1(6) = P1.5(8) = f(l e s)5)ds’ 0 < €< +oo.

Observing that ¢; € C 2([0, +oo[) with ¢’1 uniformly bounded on [0, +oo[ one obtains by the aid of
the chain rule for Sobolev functions

! ! a
f (K (5), ¢ k() w2y wiads = f 6—( f 1 (k(x, s))dx)ds=
0 0 0s\Ja
:fgqﬁl(k(x,t))dx—fQ¢1(k0(x))dx YtelO0,T].

Take ¢ = ¢} (k(-, 1)) in (3.9). Integration over [0, 7] gives

2
f¢1(k(x,t))dx+6f (u+(g+[k]g)”2)ﬂ+f(sk+k3/2)(1— ! )=
Q Ql‘ Qt

(€ + k)1+0 (g + k)

1
— 1/2/9,,2(1 _
- Ql(s + [k]:)'2Vul(1 e

< éfu(z)(x)dx (by (4.1)). 4.2)
2 Ja

)+ f $1(ko(x))dx
Q

With the help of the elementary inequalities

1 a 3
£20025-00. #(1- 525 -a6s Veebaol (a=la=3)

(c1(0) = const > 0, cz(a, 6) = const > 0 independent of &) we infer from (4.2)
2
3/2 ||
Kllery + KIS o, + 01 er T <c. (4.3)
(iii) From (4.1) and (4.3) one easily deduces an estimate on ||u’|[, WLy Indeed, (3.8) im-

plies, fora.e. £ € [0,T] and all v € W, P (),

<

@ @1 g

1/2
< {(mes Qe+ kL, ( f (& + [k@)]o) PV (o)
Q

(p-D/p
+g( f IVu(t)Ipdx) }IIVvIILp.
Q
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By (4.1) and (4.3), the function in brackets { - } is uniformly bounded with respect to the norm
in L”' (0, T). Thus

”“/”Lp’(w—l,p’) <c. 4.4)

(iv) We deduce from (3.9) an estimate on f or |Vu|? in terms of integral norms of k. To this end,
we define

> d
¢2(§):¢2;8(§):jj—s OS§<+OO.

(e + [s]e)1/2

Clearly, ¢, € C'([0, +oo[) and 0 < #5(6) < 8]% for all £ € [0, +oo[. As above,

fo (K (1), B () 2y 1.2l = fQ $2(k(x, D)dx - fg ako(x)dx Vi e[0,T]

1

Next, since ¢ is continuous on [0, +oo[\{g}, we have

VIk(, D]e

e+ kL a.e.in Q.

Vo k(- 1) = -

Thus, from (3.9) with ¢ = ¢/ (k(-, 1)) therein it follows

! Vk - VIk],
Lqﬁz(ko(x))dx + LI |VM|2 — L P (k(x,1))dx — E Lt (,U +(e+ [k]a)l/z) (e + [k]5)3/2
32
+fQ % Vielo,T]. (4.5)

Clearly, the second term on the right hand side of (4.5) is < 0, while the third term on the right
hand side of (4.5) is easily estimated by

3/2
fd<+—](12£el/2fk(l+k”2)+fk.
o, (e + [k]o)Y/ } ¢

The integrals in (4.5) which involve ¢;, can be estimated by observing the definition of [£], (with
& = ko(x) and & = k(x, 1)) as follows

f B (ko(x)dx > 2 f ky*(x)dx — 2¢'*mes Q
Q froo<t]

and

f 92(k(x, D)ddx =2 f |6+ kO, )% — ' |dx
Q {k(x,t)sg}

1/2

1\1/2 & 1
+2f e+ - —31/2dx+—f k(x, 1) — —)dx
<2 f kl/z(x, Hdx + gl? f k(x, t)dx
o) o)
for all ¢t € [0, T']. Thus, from (4.5) it follows

2 f ky*(0)dx - 2&'Pmes Q + | |VuP?
k(x,z)sg} o

S2fkl/2(x,t)dx+f k+s”2(fk(x,t)dx+f k(1+k‘/2)) (4.6)
Q s Q 1
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for all t € [0, T]. Hence, by (4.3), f or |Vul? is uniformly bounded by constant that does not depend
on &.
(v) We now deduce from (3.9) an estimate on f VK|, (1 <g< %) For the time being, let

1 <g<n(m=23,...). Combining Holder’s inequality and Sobolev’s embedding theorem we
obtain, for all w € L®(0, T; L'(Q)) N LI(0, T; W 4(Q)),

(1+n)g/n q/n q q
fQ v < el (I, + 99, )-

Thus, taking into account (4.3), we find, forany 1 < g <2,

f k3q/2§c(1+ f |Vk|4) @7
Or Or

(recall that k € L*(0, T; W"2(Q)), cf. Prop.2).
To proceed, let 1 < g < ‘3—‘ and define 6 = 0, = %. Then 0 < 6 < 1 and (12*%])(] = 37‘]. Hence,
by (4.3) and (4.7),

2 2 2-9)/2
f V|7 s( f ﬂ)q/ ( f 1 +k)(1+6)q/<2—q>)( @/
Or or (1 +k)1+d or
1 \q/2 2-9)/2
s(:(—)"/ (1+(f |Vk|q) )
Op Or

Thus,

4 4
VK <c Y1<g<sz (c=clg)—>+oasqg— <) (4.8)
o 3 3

(vi) In order to prove that [k]é/ 2Vk is uniformly bounded in [L"(Q7)]* for some r > 1, we

consider the functions

» » 1
$3(6) = $3:0(6) = f: [s1:%ds,  $4(€) = due(&) = f (1 Jds, 0<¢< +oo,

o b (L+¢3(9)

where 0 < v < 1 will be specified below. Obviously, ¢4 € C2([0, +oo[). The function ¢ = gb:t(k(-, 1))
is admissible in (3.9). Observing that

O ylkGonn?
Y U+ g3k )™

Vk(-,t) a.e.in Q,

it follows
f G4 (k(x, T))dx + yf (1 + e+ K] )1/2)M + | (ek+ (1 - ;)
a ’ or RO YO BN (1+¢3(k))
1
— 1/2 21 -
= fQ (e ) PV (1 - ) + fQ Galko(0))dx
3
< fQ (Eu(z)(x) + ko(x))dx (4.9)
We notice that a test function of the type ¢ = ¢/, (k) has been used in [6].
To proceed, put w = ¢3(k). We have
f wil<c Vi<g< g [by (4.7) and (4.8)],
or (4.10)

[Vwl*
)’L WSC V0<)/<1 [by(49)]
T
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Wetake 1 <r<Zand0<y< %X Thenl < (1;_72’ < %. From (4.10) with ¢ = % we obtain

by the same argument as (4.8)

8 8
wllzrgpin Sc V1sr<s (c=c(r) > +00 as r— 7). 4.11)

We show that (4.1) and (4.11) imply the estimate

16 16
W Plen <e Vi<p<= (e=cp) >+ as po =) (12

Indeed, put z = w?/3. By (4.1), ||z =ty < ¢. On the other hand, by Sobolev’s embedding theorem
and (4.11),

T T T
3r/2
fo 2l dt = fo [ —~ fo Wl dr < c.

Thus, by interpolation,

3/4 1/4
”ZHLZV(LZ’) < ||Z||L3r/2(L3’/(2”))||Z||L°°(Ll) <c V1 <r< ?

Whence, (4.12).
(vii) We finally prove an a-priori estimate on ||K||; W7y (1 <r< %) We insert ¢ €
W) into (3.9). Taking into account that maxg |¢| < cll¢lly1.~ it follows

’(k,(t)’ ()0>(W1,r’)*’wl,r’ = |<kl(t),§0>(Wl,2)*’W1,2

r 1/r
< {( fg [+ (e + ) ko] dx) -+
+c f (sk(t) + K212 (0) + (e + [k(z)]g)l/2|vu(z)|2)dx}||¢||wl,ﬂ.
Q
Estimates (4.1), (4.3), (4.8) and (4.11) show that the function in brackets {} is uniformly

bounded in L'(Q7) for all 0 < & < 1. Thus,

”k,HLI((le"’)*) <ec. (413)

4.2 Passage to the limit ¢ — 0

Firstly, from (4.1), (4.3) (combined with (4.6) and (4.4)) we obtain a subsequence of (u;) (not
relabelled) and an element 4 € L*(Q) such that

us — u  weakly in L*(0, T; W) *(€)) and weakly= in L=(0, T; L*(2))
(4.14)
W, — ' weakly in L7 (0, T; Wy "7 (Q)), us(T) — h weakly in L*(€))

as € — 0. In addition, again by passing to a subsequence if necessary, we may assume that
us — u strongly in L*(Qr) and a.e. in Of 4.15)

as € — 0 (see, e. g., [10; Chap. 1, Thm. 5.1], [22; Cor. 4]). The passage to the limit £ — 0 in the
inequality on u, in (3.7) gives the inequality on « in (2.22).

Secondly, to select an appropriate subsequence of (k.) we notice that W 4(Q) c L*(Q) (1 <
q < %) compactly and L(Q) = (L*(Q))* ¢ (W""(Q))* (1 < r < §) continuously. Then (4.3),
(4.8) and (4.13) imply the existence of a subsequence of (k.) such that

k, — u weakly in L4(0, T; W' 4(Q)) strongly in L4(0, T; [*(Q))and a.e. in Qr (4.16)
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as € — 0 (see [22; Cor.4]). Clearly, k > 0 a.e. in Q7. With the help of these convergence
properties we conclude from (4.1), (4.3), (4.11) and (4.12) by routine arguments that

(& + [kele) 4 Vu, — k'4Vu  weakly in [L2(Q7)]%,

Vke Vk
a+ ks)(1+6)/2 - a+ k)(1+6)/2

[kels*Vks — K'/2Vik  weakly in [L" (@) (1<r<§),

weakly in [L2(Q7)]?,
4.17)

2 1
w§/3 = (¢3(k8))2/3 — §k weakly in L°(Qr) (1 <p< 76)

as € — 0 (cf. part. (vi) of the a-priori estimates). To obtain V(k3/?) = %kl/ 2Vk we have made use
of an elementary extension of the usual chain rule for Sobolev functions for the case ¢(¢) = &3/?
(& € [0, +ool).

Next, from (3.8) and (3.9) we conclude that, for all # € [0, T],

1 1
- f u?(x, dx + f (& + [kele) P Vug) < = f ud(x)dx, (4.18)
2 Ja 0 2 Ja

L(%uﬁ(x,t)+kg(x,t))dx+j;k3/2§fg(%u%(x)+ko(x))dx. (4.19)

To pass to the limit € — 0 in (4.3), (4.6) and (4.18), (4.19), we notice as prototype the following
elementary result:

Let (f,,) € LY(Q7), (gm) € LP(Q7) (1 < p < +00) be sequences such that

Jn=20,8,>20ae in QOr, ffm(x, Hdx + f gh < Co=const fora.e. t€[0,T]
Q

t

(m=1,2,...), and (4.20)

fin = f weakly in L"(Q71),  gm — g weakly in LP(Qr) as m — +co.

Then ff(x,t)dx+f g’ <Cy fora.e te[0,T].
Q Or

Now, combining (4.16), (4.17) and (4.20) with (4.6), (4.18), (4.19) one easily deduces (2.16) and
(2.23)-(2.25).
By (4.14) and (4.17), from (3.8) it follows (ﬁrst forve LP(0,T; W&’p (Q)) and then by approx-

imation ) that

0
—f u—v+f kl/zVu-Vv=fMo(X)V(x)dx
QT 51‘ QT Q

0
for all v € L*(0,T; Wé’4(Q)) with 8_‘; e L*(Q7), v(-,T) = 0 (cf. (2.5)). Moreover, there exist
the distributional derivative u’ € L2(0, T; W~143(Q)), and u(0) = ug in L2(Q) (cf. Proposition 1,

Section 2.2).
Next, we prove h = u(T) in L%(Q) (cf. (4.14)). Indeed, for every v € Wé’p (),
T T
(h’ V)L2 - (MO’ V)L2 = hmf <u;‘(t)9 V>w—1,p’ Wé’pdt = f <M/(t), V)w—l,p’ W(;!’dt
0 ’ 0 ’

= (M(T), V)L2 - (MO’ V)LZ-
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‘Whence the claim.

It remains to carry out the passage to the limit € — 0 in (3.9), where we write

T
’ 0
f <k8,<p>(W1,2)*’W1,2dt = —f kg—tp
0 Or ot

with appropriate test functions ¢ (to be specified below). Here, the passage to the limit ¢ — 0 of
the L'-term on the right hand side in (3.9) is the only crucial point.

To do this, let £ € Cj(Q), £ > 0in Q. By (4.17), (e +[ke]) /4 (Vue) 2 — kM4 (V) /? weakly
in [L*(Q7)]? as € — 0 and thus

f K'2\VuPe < liminf | (e + [kele) /[ Vugl*C.
Or Or

On the other hand, the function v = u.{ being admissible in (3.8), we find
RS
Or

<2 f 2 T (i + 5 f U3 (X)L (x) — f (& + [kelo)'? + &lVuel ™) (Vg - Vs,
2 Ja 2 Ja or
Thus, by (4.14) (recall 2 = u(T) in L*(Q)) and (4.15),

lim supf (& + [kele) P IVugl*¢ <
Oor

<=5 [ e+ 5 [ i [ KR
2 Ja 2 Ja Or

= f k'2|Vul>¢  [by the local energy equality (A.9)]
Or

4.21)

<liminf | (& + [kelo)?|Vugl?e.
Or

Hence, by (4.21),

lim | (&+[kelo) ?IVu?e = | kY2 |Vu L.
or or

This equality continues to hold for all £ € Wé’p (Q),>0a.e. in Q (recall p > 4). It follows
lim f |(s + [kele) P Vugza — k1/2|vu|2m| =0 Vze WS”’(Q), YaeL®0,T). (4.22)
Or

Let ¢ € C([0,T]; Wé’p (Q)). Then there exist ¢,

m .

>zt (zm; € Wy P(Q)); m = 1,2,...) such
j=1
that @,, — ¢ in C([0, T1; Wy ”(Q)). Thus, by (4.22),

lim | (g + [kelo)*[Vug)?v = f K2\ Vuly.
Or Or
From (3.9) it now follows that

0
- f k2w | @ k?)Vu v = f ko(x)e(x, 0)dx + f (K'21Vuf? - %)
or o Or Q

Oor

a 6
for all ¢ € C'(10,TT; Wy * (@) (1 < s < &) such that a—f € L*(Qr) and ¢(T) = 0. Finally, by
Proposition 1 (with Wé’ s (Q) in place of Wl’q/(Q) in (2.6)),

Ak e LNO, T; W H5(Q)), k(0)=ky in W L5Q).

The proof of the Theorem is complete.
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5. Appendix. A local energy equality for weak solutions of linear
parabolic equations with unbounded coefficients

Let Q c R? be a bounded domain with Lipschitz boundary 0Q2, and let 0 < 7' < +o0. For ¢t €]0, T,
put O, = Qx]0, ¢[. We consider the problem

0
a—’;—div((a+b)Vu)=0 in Or, u=0 on dQX[0,T], (A1)

where |a| < Const in Q7, and b is a non-negative, possibly unbounded function. Our aim is to
prove a local energy equality for weak solutions of (A.1). This equality can be motivated by
multiplying the differential equation in (A.1) by u¢ (£ € C1(Q)) and integrating by parts over Q.

Proposition A (local energy equality) Let a € L*(Qr) and let b be a measurable function in Qr
such that

b>0 a.ein Qr, b>eL®0,T;LYQ), V®b'?) e[Ll*0n]. (A.2)

Let u € L*(Qr) N C,u([0, TT; LX) N L2(0, T; Wy *(Q)) verify
f blVul* < +co0, 3Au’ € L*(0,T; W H43(Q)), (A.3)
Or

!
f U, V)yra yrads + (a+b)Vu-Vvdx=0 VYrel0,T],
0 o 0 (A4)

Vv e L20,T; Wy *(Q)).
Then

1
3 f u? (x, N (x)dx + f (a+ b)(|Vul*¢ +uv - Vo) =
1Q & (A.5)
=3 f W (x,0)0(x)dx Y1e[0,T], Y{eCl).
Q
We emphasize that v = u is not an admissible test function in (A.4).

From Proposition A we draw a conclusion which has been fundamental to pass to the limit
& — 01in the L'-term on the right hand side of the functional relation in (3.9).

Corollary Let k be a measurable function in Qr such that

Vk|?
k>0 ae inQr, kel 0,T;L(Q), 5f (ll | <+o00 (0<d6<1). (A6
Or

+ k)1+6

Let u € L*(Qr) N C,u([0, TT; LX) N L2(0, T; Wy *(Q)) verify

f K'2Vul? < +o0,  Au’ € L}, T; W H43(Q)), (A7)
or

t
f<u',v>W_1,4/3W1,4ds+f K'2Vu-Vvdx=0 Vtel0,T],
0 o 0 (A.8)

Vv e L0, T; Wy *(Q)).
Then

% f u? (x, )¢ (x)dx + f k1/2(|Vu|2§+uVu-V§)=
@ % (A.9)

:% f W (x, 00 (x)dx Yte[0,T], Y{eClQ).
Q
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Proof of the corollary. Define

a=k"? -1+ b=010+k"
Then

a+b=k"?, -1<a<0 ae.in Or.

By (A.6) (with 6 = } therein),

b>1 ae.in Qp, b*eL™0,T;L (Q), IV(b?)? < +o0.
Or

Thus, (A.6) and (A.7) permit to apply Proposition A to (A.8). This gives (A.9).
We notice that the decomposition

K'/? = (k”2 -1+ k)l/z) +(1+k"2, where V(1 +kY*el?

has been used in [14], [15] for the study of the steady case of the model problem (1.12), (1.13) (cf.
the paper in [7], where the coefficient (eddy viscosity) k!/? is not included). |

Before passing to the proof of Proposition A, we introduce more notations (cf. Section?2.2).
Letw € LP(0,T;X) (1 < p < 400). Given any g €]0,T[, for 2 €]0,T — #o[ we introduce the
Steklov mean w, of w

1 t+A
wy(t) = jlf w(s)ds, te€][0,1].
t

The following properties of w, are well-known.
i) wy > win LP(0,T;X)as A — 0;
(i) there exists the distributional derivative w’, € LF(0, to; X), where
wi(t) = /ll(w(t +A)—w() fora.e. tel0,1]
(cf., e. g., [3; Appendice], [5]).
Let H be a real Hilbert space with scalar product (-,-)g and continuous embedding X c H.

Letw e LP(0,T;X) (2 £ p < +00) has the distributional derivative w’ € L7 (0, T; X*). Then, for
everyve LP(0,T;X),

10 1 0]
L W, v)x xdt = /111_1’)% 1 f(; (w(t + A) — w(1), Vﬂ(t))Hdt. (A.10)

]
1
Proof of Proposition A Let w,(x) = —zw(f) (x € R%,p > 0) denote the standard mollifying
PP
kernel. We extend u(-, f) by zero onto R2 \ Q and denote this extension again by u(:, 1).
Let £ € CY(R?), supp () € Q. Put d; = dist (supp (£), 0Q). For (x,1) € R*X]0, T, define
(@p 400 1= (@, 4 U0 = [ =yt
R

Up(x,1) = {(xX)(wp * u)(x, 1).



J. Naumann: Degenerate parabolic problems 41
Then for every 0 < p < 3d; the function v = w, * U,, is in L*(0, T; W, *()). Hence, by (A.10).

0}
f <M,,U)p * Up>w—1,4/3 W&Adt =
0 ,

1
= lim —
-0 A

0]
f f[u(x, t+A) —ulx,)l(wp * Up)a(x, dxdt  (tg €]0, T|). (A.11)
0 Ja
Let 4 €]0, T — ty[. By Fubini’s theorem, for all (x, #) € QXx]0, #g[,

(@p * Upha(x,1) = |y # (UG, D)), (Upa(x, 1) = L@y * ua, 1)),

It follows
1
- f |uCe, £+ 2) = uCx, 1) (@, = Up)ax, dx =
A Jo

1
=~ | [@p xuCst+ D)) = (@) * u, )X |(Up)ax, Delx
A Ja

(by Fubini’s theorem; notice that supp () N B,(x) =0 VY x € Q, dist (x, 0Q) < %dg)

0
B fg {5, @0 % uaC. @R D@ * uC 0)@)

1d

.. fQ [(@p * 2. N PL)dx

and therefore
0]
l f f[u(x, t+A) —ulx,)(wp * Up)a(x, Hdxdt =
AJo Ja
1 2 1 2
=3 f [(wp * u,l(-,to))(x)] {(x)dx — 3 f [(a)p * u,l(-,O))(x)] Z(x)dx. (A.12)
o) Q
Letbe 0 <p < %dg and 0 <t < tg (fixed). We prove

}I_I)I(l) fQ [(wp * up (-, D)D) PL(x)dx = fg [(wp * u(-, ()L (x)dx. (A.13)
To see this, we firstly show

/lli_r)r(l)(wp *u(, 1))(X) = (wp * u(-,H))(x) Y xesupp ().
Observing that u € C,,([0, T]; L*(Q)), for every € > 0 we find d, . > O such that

<e Vsel01], |s—1 <Oye.

| [ onte= 9y = [ =ty nay
Q Q
Thus,

@y 1 D)) = (0 5 1, D)) =

<eg V0<A< min{%d{, 6)(,5}.

1+1
f fQ [wp(x —Vu(y, 5) — wp(x — y)u(y, t)]dyds

1
A

Secondly, we insert v = w, * U, into (A.4) and use (A.11), combined with (A.12), (A.13).
This gives, for all ¢ € [0, T],

1 1
3 fQ [(wp*u(-, D)X L (x)dx+ fQ (a+b)Vu-V(w,+U,) = 3 fg [(w, *u(-, 0)(x)]*¢(x)dx (A.14)
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(notice that [, [(w, * u(-, 1))@ (x)dx — [, [(wp * u(-, TH(x)]*L(x)dx as tg — T).

To carry out the passage to the limit p — 0 in (A.14) we observe that u(-,t) € L*(Q) (r€[0,T)
and u € L*(Qr) imply

wp*u(-, 1) — u(-,t) strongly in LZ(Q), wp*U, — {u strongly in LZ(QT) as p—0.
Then we show
IV(wp * Upllizziope < ¢ 102V(w, = Upliizzconp < ¢

where the constants ¢ do not depend on 0 < p < %dg. This can be proved by following the idea in
[7; pp. 1060-1061]. Then (A.5) is readily obtained from (A.14) by p — 0.

Acknowledgement The author is indebted Jorg Wolf for helpful discussions when preparing
this paper.
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