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Summary

This paper is concerned with minimization and maximization of the principal eigenvalue of p-Laplace equa-
tions depending on functions which belong to a class of rearrangements. In case of p = 2, this optimization
problems are motivated by the question of determining the most convenient spatial arrangement of favorable
and unfavorable resources for species to survive or to decline. We prove existence and uniqueness results,
and present some features of optimizers. The radial case is discussed in detail.
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Riassunto

Si studia il minimo ed il massimo del primo autovalore di un’equazione col p-Laplaciano contenente un
peso variabile in una classe di riordinamenti. Nel caso p = 2, questi problemi di ottimizzazione sono mo-
tivati dalla ricerca della distribuzione pid conveniente delle risorse in un determinato ambiente affinché si
abbia la sopravvivenza o la estinzione di una specie. Si trovano risultati di esistenza, unicitd, e rappresen-
tazione degli estremanti. Si studia, in particolare, il caso di domini radiali.

Parole chiave: p-Laplaciano, Primo autovalore, Riordinamenti, Ottimizzazione

1 Introduction

Suppose that Q ¢ R? is a smooth bounded domain representing a region occupied by a population
that diffuses at rate D and grows or declines locally at a rate g(x), so that g(x) > 0 corresponds
to local growth and g(x) < O to local decline. Suppose that the exterior of Q is hostile to the
population (individuals which across the boundary die). Suppose that the carrying capacity of the
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population is equal to K. If ¢(x, ¢) is the population density, the global behavior of the population
is described by the diffusion equation
0

6—":=DA(,0+g(x)go—K(,02 in Qx(0,T), ¢=0 on 0Qx(0,T), (1)
where A denotes the spatial Laplacian of ¢(x, ). A simplified form of the logistic equation (1)
has been introduced by Pierre Francois Verhulst about 175 years ago.

As proved in [1], equation (1) predicts persistence of the population if and only if 1, < 1/D,
where A, is the (positive) principal eigenvalue in

Au+Agx)u=0 in Q, u=0 on 0Q. 2)

The existence and variational characterization of the eigenvalues of (2) were established in [2].
Since the principal eigenvalue A, depends on g, it is very important to find its extreme values for
weights within the set of rearrangements of a given weight function go(x). This investigation has
been done in the recent paper [3]. Related results were obtained in [4] and in [5]. Eigenvalues for
equations with sign changing weights have been discussed in [6].

In the present paper we investigate a more general equation. Namely, let Q be a bounded
smooth domain in RY, and let g € L*(Q) be a function (possibly sign changing) positive in a set
of positive measure. For p > 1, we consider the eigenvalue problem

~Apu=Agu”', u>0in Q, u=0 on Q. 3)

Here A is the principal eigenvalue which depends on Q, p and g. In what follows, Q and p will be
fixed, whereas, the function ¢ may change, therefore we shall write A = A,. It is well known that

fg |VvIPdx
Jo glvIPdx

[Vuo|Pdx
L ve HyP (), f ghviPdx > o} = fﬂ—g
Q

Ay = inf{
£ fggué,)dx

where ug, € Hé’p () is the principal (positive) eigenfunction, which we normalize so that

fugdxz 1.
Q

It is known that the normalized eigenfunction u, is positive and unique. For a discussion of
existence and uniqueness of the principal eigenvalue of problem (3), we refer to [7].

If E ¢ RY is a measurable set we denote with |E| its Lebesgue measure. We say that two
measurable functions f(x) and g(x) defined in Q2 have the same rearrangement if

fxeQ: f(x) 2Bl =H{xeQ:glx)=pl VBeR.

If go € L*(Q), we denote by G = G(go) the class of its rearrangements. We assume go(x) > 0 in
a subset of positive measure, and suppose g is not a constant. Let G be the closure of G in the
weak* topology of L™(€2). Note that, even if go(x) > 0 in a subset of positive measure, we may
have g € é with g(x) < 01in Q. In this case, the set of functions v such that fg gvlPdx > 0 is
empty, and we put A, = +oo.

The paper is organized as follows. In Section 2, we investigate minimization and maximiza-
tion of the principal eigenvalue A, for g € G. We also give a representation of minimizer and
maximizer. In Section 3 we consider the radial case and find more precise results. Note that, in
case of p = 2, we find all results from [3], however, the present approach is slightly simpler. In
Section 4 we give an interpretation of our results for a population which diffuses according to
equation (1).
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2 Optimization of the principal eigenvalue

Let G be the class of rearrangements Eenerated by a function go(x) € L*(€2) which is positive in
a subset of positive measure, and let G be the closure of G in the weak* topology of L*(£2). For
g € G with g(x) > 0 in a subset of positive measure, we consider the problem

|Vu,|Pdx
inf A, = inf Jo IVl

, 4
geG 96 |, gubdx @

where uy is a positive eigenfunction of problem (3) corresponding to g. Note that

{ fQ [Vv|Pdx

inf A, = inf inf
* JogviPdx

:veHl’pQ,f vpdx>0}. 5
int Infin o () Qg|| )

Incaseof g € é with g(x) < 01in Q we put 4, = +oco. For g € é, we define

1
J(g) = /l_
8

Of course, when g(x) < 0 in Q we have J(g) = 0. Otherwise, we have

gv|Pdx gubdx
J(g) = sup fQ = fQ -
vt @ Jo IVVIPdx [ IVuglPdx

(6)
Note that problem (4) is equivalent to problem

ghvlPdx
sup J(g) =sup sup fQ

— ©)
4G $6 ver (@) Jo IVVIPdx

We also investigate the problem

|Vu,|Pdx

) (8)
96 g6 JoQubdx

Note that, problem (8) is equivalent to problem

I, gvIPdx
inf J(g) =inf sup ————.
8<G 80 i) Jo [VVIPdx

(©))

We will see that problems (7) and (9) are quite different. In our discussion, we make use of the
following strong results proved in [8] and [9]. For short, throughout the paper we shall write
increasing instead of non-decreasing, and decreasing instead of non-increasing.

Lemmal Letg : Q —» Randw : Q — R be measurable functions, and suppose that every
level set of w has measure zero. Then there exists an increasing function ¢ such that ¢(w) is
a rearrangement of g. Furthermore, there exists a decreasing function Y such that y(w) is a
rearrangement of g.

Proof. The first assertion follows from Lemma 2.9 of [9]. The second assertion follows apply-
ing the first one to —w. ]

Denote with ? the weak closure of G in L?(Q), 1 < p. It is well known that é is convex and
weakly sequentially compact (see for example Lemma 2.2 of [9]).
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Lemma 2 Let G be the set of rearrangements of a fixed function gy € LP(QY), p = 1, and let
we L1(Q), g = p/(p — 1). If there is an increasing function ¢ such that $(w) € G then

fgwdx§f¢(w)wdx Vgeé,
o) Q

and the function ¢(w) is the unique maximizer relative to G. Furthermore, if there is a decreasing

function  such that y(w) € G then
f gwdx > f yw)ywdx Vgeg,
Q Q

and the function Yy(w) is the unique minimizer relative to G.

Proof. The first assertion follows from Lemma 2.4 of [9]. The the second assertion follows from
the first one putting ¢(¢) = ¥(—1). O

Lemma 3 Ler G denote the set of rearrangements of a fixed function gy € LP(Q), p > 1. Let
Y : LP(Q) — R be a convex functional sequentially continuous in the L1(Q) topology on LP(Q),
q= 1%. Then ¥ attains a maximum value relative to G.

Proof. See Theorem 7 of [8]. |

We recall that the L7(€2) topology on LP(€2) is the weak topology if 1 < p < oo, and the weak*
topology if p = oo [8].
Now, we prove some results about the map g — J(g), where J(g) is defined as in (6).

Lemma 4 The map g — J(g) is continuous with respect to the weak* topology in L™ ().

Proof. 1If g(x) < 01in Q then, J(g) = 0. We claim that, if g; — g in the weak™ topology of L*(Q)
then J(g;) — 0 as i — oo. By contradiction, suppose there is a subsequence (denoted again g;)
such that J(g;) > € for some positive €. For each i, we must have g; > 0 in a set of positive
measure. From

p
g, dx
Jogin dx

> 10
fg Vg, |Pdx 19)

recalling the normalization of ug; and the fact that g;(x) < M for some constant M we get,

M
fIVuglpdx<—fg, pdx<—

It follows that, for a suitable subsequence (denoted again u,,), u,, — u weakly in the H Lr(Q)
topology and u,, — u in the L*(Q2) norm for some s > p, and the LP(€2) norm of u is one. We have

liminffIVugilpdxzflVﬁl”dx>0, (11)
Q Q

[—00

and
lim | guy dx= fgﬁp dx.
Q Q

i—00

Since fQ g,-ugl. dx > 0, and fQ gu” dx < 0, we must have

[—00

lim g,-ugl. dx =0.
Q

The last result and (11) contradict (10), hence, J(g;) — 0 = J(g).



G. Porru: Optimization of eigenvalues 48

Now, let g(x) > 0 in a set of positive measure, and let g; — g in the weak* topology in L*(€).
We may assume that g; > 0 in a set of positive measure (depending on i). If u,, u, are normalized
as usual, we have

ngiuﬁ,’i dx . fgg,-ug dx i fgg,

J(gi) = > J@) (12)
l fQ [Vug,|Pdx fg IVuglpdx fQ gug dx’
Let 0 < € < J(g). Since
lim g,-ué,7 dx = fgug dx,
1—00 Q Q
by (12) we have
J(gi) > J(g) — € for i> v (13)

As a consequence,

1
Vu, |Pdx < b dx < C. 14
fQI U, x_J(g)_Engug, x (14)

It follows that, for a suitable subsequence (denoted again u,,), u,, — u weakly in the H LrQ)
topology and ug, — u in the L°(£2) norm for some s > p. Hence,

limianIVugilpdxzflVﬁI”dx,

and
lim | gy, dx = f gu” dx.
1—00 Q Q

Due to our normalization, the L”(€2) norm of u is one. Using the last two results we find

P 7P
gillg, dx gu” dx
Jo s & _ o < J(g). (15)

lim sup J(g;) = hmsu
N P Vuglrdx fQ IVatlpdx

From (13) and (15) it follows that J(g;) — J(g). We also remark that our proof yields u,, — u, in
the norm of H'"?(Q). The proof of the lemma is complete. O

Lemma 5 The map g — J(g) is Gateaux differentiable.

Proof. If g, g; € G we have

Jolei = 9ug dx [, giuf dx 3 Jogiug dx

J(g) + = <J(g) =
O Nugrdx [ Vugpdx " [ Nuglrdx
P p p (16)
I, &up, dx . Joy(8i — u, dx <o+ Jo,(8i — u, dx
fQIVugil dx [ [Vuglpdx ~ i, Vug pdx

Let #; > 0 be a sequence such that#t;, - O asi — oo. Let g, h € G and let gi = g+ ti(h— g). Then,
by (16) we find

Qub dx
Jgy 4 oS dx

fQ|Vug|de

e, = g)ut, dx 1n
<J(g) + IZL

Jo, IVuglpdx
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Recall that we are using the normalization fQ ugl. dx=1.Sincet; > 0asi — oo, we have g; — g
in the norm of L*(2). As a consequence, by the proof of Lemma 4, the sequence u,, converges,
in the norm of H'?(Q), to ug. Therefore, from (17) we get

i L@ =)= J(e) _ Joth = g dx'

1—0* t I, IVuglpdx

(18)

The lemma follows. |

Lemma 6 The functional J(g) is convex; furthermore, if fggo(x)dx > 0 then J(g) is strictly

convex.

Proof. Let f,g € G, let 0 < 7 < 1 and let w € H,"(€2). We have

Joltf + A =Dl dx_ fo, flwl” x ., Jo, gIwi? dx
I, IVwlpdx I, IVwlrdx i, IVwipdx

By taking the superior of both sides relative to w € Hé’p (Q), we get

Jaf + (1 -0g) < tJ(f) + (1 -1J(9),

that is, the convexity. . .
Now, suppose ngo(x)dx > 0. Then, ng(x)dx > 0forall g € G. For f,g € G, assume
equality holds in the above inequality for some ¢ € (0, 1). Then,

Joef + A =Dyl dx B fgfu? dx
o, Vuldx Ty IVuslpdx

fQ guy dx
I, IVuglpdx

+(1-9

where u;, uy and u, are normalized functions corresponding to J(zf + (1 — 1)g), J(f) and J(g)
respectively. Since

fQ(ff"'(l - gl dx _ fouﬁ7 dx e nguf dx
I, IVuslPdx Joy IVuelPdx o IVudrdx”
it follows that ,
fgfufdx _ foufdx ngugdx _ fggufdx
[ Nugrdx [, IValrds’ [, Vugrdx [, VulPdx
By the uniqueness of the normalized eigenfunction corresponding to J(f) and to J(g), we must
have u; = uy = ug.

Consider first the case f and g are positive in a set of positive measure. Then, J(f) > 0 and
J(g) > 0. Since

1 _
~Apitp = ——ful"" ae.in Q

VI()

and |
—Apug = gu‘p_l a.e. in Q,
I ¢
with uy = ug, we have
1 1
—f(x) = g(x) a.e.in Q.

VI V()

Integrating over Q we find J(f) = J(g). Hence, f(x) = g(x) a.e. in Q.
Consider now the case g < 0. Since fg g(x)dx > 0, we must have g = 0. Then, u, = 0, and the
previous proof shows that also uy = 0. But, uy = 0 implies f < 0. Finally, since fg f(x)dx >0,
we must have f = 0 = g. The proof of the lemma is complete. |

Now we prove the main result of this section.
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Theorem 1 Let gy be a bounded function in €, positive in a subset of positive measure. Let G be
the class of rearrangements generated by go, and let J(g) be defined as in (6).
(i) The problem

max J(g)

g€G

has a solution; furthermore, if § € G is a maximizer then § = ¢(uy) for some increasing function
P(2).
(ii) The problem

min J(g)

g€G
has a solution; if fQ go(x)dx > 0, the minimizer g is unique; if fQ go(x)dx > 0, we have § = y(uz)
for some decreasing function y(t); finally, if go(x) > O then the minimizer g belongs to G.

Proof. Since J(g) is continuous with respect to the weak* topology of L*(Q) (by Lemma 4)
and since it is convex (by Lemma 6), a maximizer g of J(g) exists on G (by Lemma 3). Since J(g)
is Gateaux differentiable (by Lemma 5),if 0 < ¢t < 1 and if g, = g + #(g — &), we have

Jolg = @udx

= & 4o@) as t—0.
fg |VuglPdx

J(@) 2 J(g) =J(@) +1

It follows that »
fg(g - g)ugdx o(t)

+
fQ [VuglPdx t

Ast — 0, we find
f(g - 9uldx <0.
o g

Equivalently, we have

LgugdeLgugdx Vgeg. (19)

Recall that u3(x) > 0 a.e. in Q, because ¢ € G and G is generated by a function go which is positive
in a subset of positive measure. Hence, J(g) > 0 and u; satisfies the equation

A p—l
guy (20)

1
-Aju; =
IR

By equation (20), the function u; cannot have flat zones neither in the set F'y = {x € Q : 2(x) < 0}
nor in the set F, = {x € Q : g(x) > 0}. By Lemma 1, there is an increasing function ¢; () such that
¢1(u§ ) is a rearrangement of g(x) on F; U F,. Define

a = inf ul(x).
xeQ\F; &

Using (19), one proves that ug (x) < ain F; (see [10] for details). Define

B= sup ub(x).
xeQ\F, °©

Using (19) again one shows that ug (x) = Bin F,. Now we put

¢1(t) f 0<t<a
d(t)=2 0 if a<t<p
o1(1) if t>pB.
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The function () is increasing and &(ug ) is a rearrangement of g(x) in Q. Indeed, the functions &
and &(ug ) have the same rearrangement on F; U F, and both vanish on Q \ (F; U F3). By (19)

and Lemma 2 we must have g = &(ug ). Part (i) of the theorem follows with ¢(f) = @(”).

Since the functional J(g) is continuous with respect to the weak* topology of L™ (€2), and
since G is weakly compact, a minimizer g exists in G. Assuming fg go(x)dx > 0, the uniqueness
of the minimizer follows from the strict convexity of J(g) (see Lemma 6). If fg go(x)dx > 0, the
minimizer g is positive in a subset of positive measure. Therefore, J(§) > 0 and uz(x) > 0 a.e. in
Q. If0<t<1andif g, = g +t(g — ), since J(g) is differentiable, we have

I8 — Bujdx

J@) <J(g)=J@) +t———=
@ <Jg)=J@ +1t fQIVuglpdx

+o(t) as t— 0.

It follows that
f(g - duldx > 0.
o g

Equivalently, we have

fgui”dxzfg’u{’dx Vg egG. 20
o ¢ o ¢
The function u; satisfies the equation

L

pUg = —8§ U, - (22)
NI

By equation (22), the function uz cannot have flat zones neither in the set F3 = {x € Q : g(x) > 0}

nor in the set Fy = {x € Q : g(x) < 0}. By Lemma 1, there is a decreasing function yr;(¢) such
that ¢/ (ug ) is a rearrangement of g(x) on F3 U Fy4. Following the proof of Theorem 2.1 of [10], we

introduce the class ‘W of rearrangements of our minimizer g. Of course, W C G. Define

= inf u?(x).
Y X€Q\F3 g()

Using (21), one proves that u’g (x) <y in F3. Define

0= sup ul (x).
xeQ\Fy ©

Using (21) again one shows that ug (x) > 6 in F4. Now we put

() if0<tr<y
&(r):{o if y<t<6
Y1) if > 0.

The function y(¢) is decreasing and &(ug ) is a rearrangement of g(x) in Q. Indeed, the functions g
and 1Z(u§:,7 ) have the same rearrangement on F3 U Fy4, and both vanish on Q \ (F3 U F4). By (21)
and Lemma 2 we must have g = J(u)) € W.

Note that, in general, the minimizer ¢ does not belong to G (see next theorem). Assuming
go(x) > 0, we can prove that ¢ € G. Indeed, by (22), the function u; cannot have flat zones in
theset F = {x € Q : g(x) > 0}. If |F| < |Q)], since g € é, by Lemma 2.14 of [9] we have
|[F| = [{x € Q : go(x) > 0}|. Therefore there is g; € G such that its support is contained in F. By
Lemma 1, there is a decreasing function ¢ (¢) such that :,l/l(ug ) is a rearrangement of g;(x) on F.
Define

= inf /' (x).
Y XeQ\F ué’(x)
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Using (21), one proves that ug (x) £ yin F. By using equation (21) once more we find that
ug(x) <y a.e. in F. Now define

() if0sr<y
W)‘{o it 1>y,

The function §(¢) is decreasing and J(ug ) is a rearrangement of g; € G on Q. Indeed, the functions
g1 and 1Z(u‘;é7 ) have the same rearrangement on F, and both vanish on Q\ F. By (21) and Lemma 2
we must have g = &(ug ) € G. Hence, in case of |[F| < |Q|, the conclusion follows with y(¢) = J(").
If |F| = |Q)|, the proof is easier and we do not need the introduction of the function g;. The theorem
follows. |

Remark. By the last assertion of the previous theorem, if go(x) > O then the minimizer g
belongs to G. We may ask what happens if go(x) is sign changing. Well, again by the previous
theorem, provided fQ go(x)dx > 0, we have g = y(uy) for some decreasing function (). In this
situation, the function g (which belongs to the enlarged set G) cannot belong to G since ¢ cannot
be sign changing, as the following theorem shows.

Theorem 2 Suppose u € Hé”’(g) N H*(Q) N CY(Q) satisfies u(x) > 0 in Q and
—Apu = A" ae. in Q

for some positive A and some decreasing bounded function . Then, either Au < 0 or Au > 0 a.e.
in Q.

Proof. By contradiction, suppose that the essential range of A,u contains positive and negative
values. Since u > 0 and —A,u = Ay(u)uP~', y(r) takes positive and negative values for r > 0. Let

B = sup{r: y(r) > 0},
Qp ={x e Q:ulx) >p}.

By our assumptions, the open set Qg is not empty. On the other side, since ¢ is decreasing and
u > 0 we have
=Apu <0 in Qg, u=p on 9.

The maximum principle for p-subharmonic functions yields u(x) < 8 in Qg. This contradicts the
definition of g, and the theorem follows. ]

3 The radial case

In this section, let Q = B be a ball centered in the origin. A function u defined in B is Schwarz
symmetric if and only if all sets {x € Q : u(x) > t}, Vt € R, are balls centered in the origin. In
this case we write u = u*. If u is not Schwarz symmetric, we associate to u a rearrangement uf
which is Schwarz symmetric. The function u* is named the Schwarz decreasing rearrangement of
u. We also use the function uy, a rearrangement of u which is radially symmetric and increasing
with respect to |x|. The following results are well known.

Lemma 7 Let Q = B.
i) If f(x) and g(x) belong to L (Q) then

fQ P (0dx < fg Fgodx < fQ Fghds. 23)
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i) Ifu € Hé’p(Q), u(x) > 0 then ut € H(;’p(Q), ub(x) > 0 and

f \VulPdx > f Vi |Pdx. (24)
Q Q

Furthermore, if equality holds in the latter inequality, and
lixeB:Vif(x) =0} =0
then u(x) = un(x) in Q.

Proof. See, for example, [11]. Note that, inequality (i) is often proved for non negative func-
tions. However, replacing f by f + M and g by g + M with a suitable constant M, one gets the
result for bounded functions. O

Theorem 3 Let B be a ball centered in the origin, and let gy be a bounded function in B. Let G be
the class of rearrangements generated by go, and let J(g) be defined as in (6). Then, forall g € G
we have

1) J(g) < J(gﬁ);furthermore, if J(g) = J(gﬁ) > 0 then g(x) = gﬁ(x) a.e. in B.

2)If fB go(x)dx = 0 then J(g) = J(8), where § = (1 — xp)gs, B being a ball concentric with B and
such that fi}gﬁ dx=0;ifJ(g)=J(@) theng =g a.e. inB.

Proof. The proof is essentially the same as that of Theorem 3 of [3], where p = 2. For general
p, if g € G and if uy is the corresponding eigenfunction, we have

p
g u,dx
J(g) = fB—g. (25)
i IVuglrdx
Since (ué,’ )ﬁ = (ug,)” , by the right hand side of (23) we have
fg ug dx < fgu (ug)pdx.
B B
Using the latter inequality and (24), from (25) we find
IR
g" (uy)Pdx
J(g) < Jo” s (26)

Note that ug, > 0 and ug, € H(l)’p (Q). Hence, recalling the variational characterization of the

maximizer u, by (26) we find

gﬁ’

f (us)Pdx
<fBg (ugt)

< = J(gh. 27
[agras = 27)

J(g)

Now, let J(g) = J(g#) > 0. From (26) and (27) we get

Jygubdx  [ig* Ghydx [ g* (wgydx
fBIVug|de fB|Vug|pdx fgwugulpdx .

The latter equation together with (23) and (24) yield

f VuglPdx = f Vil Pdx. (28)
B B
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Furthermore, by the variational characterization of the maximizer u,; and by its uniqueness we

f_
must have u, = Ugh.

The function Ugh satisfies

p—1
gu

—Au ghu’7' in B, uy =0 on 9B. (29)

1
u =
HVATPS)

Since Ug = ug,, Ugh is radially symmetric, positive and decreasing. With v(r) = ug and z(r) =
1

: _ . !
Nrvoh for [x| = r, equation (29) can be rewritten as

e O e A (I (0)

Integration over (0, r) yields
NNyt = f Ay~
0

Recall that z(r) is decreasing and positive near r = 0. Hence, 2P s strictly positive near
r = 0. Therefore, from the previous equation, we find that v'(r) < 0 for 0 < r < rg, with rg < R.
We claim that ro = R. By contradiction, let ro < R, v(rg) > 0 and v'(ryp) = 0. This is possible
only if z(rg) < 0. Then, since z(r) is decreasing, we have z(r) < 0 on (rp,R). It follows that
2(r)(v(r))P~! < 0 on (ry, R), and that v/(r) > O there. This cannot happen, since v(r) is decreasing

and v(R) = 0. Therefore, v/(r) vanishes only at r = 0, and Vu Vug, vanishes only at the origin.

o =
Hence, by (28) and Lemma 7 (ii), we have u, = ug = Uy

g
The functions ug and u; satisfy

1 1
= —gu, , —ANpuy=
N SN TP

Hence, since J(g) = J(g*) and ug = g > 0 a.e. in Q we must have g = g* almost everywhere in
B. Part 1) of the theorem is proved.

Now, assume fB go(x)dx > 0. To prove that § = (1 — x3)gy is a minimizer of J(g), let uz be the
maximizer of

—A it ghug)P ™.

[ 8lwlPdx
>
fB [Vw|Pdx
Since g(x) > 0 1in a set of positive measure, we have J(g) > 0 and
5P
gu.dx
J(ug) = fB—g.
[ IVuglPdx
Moreover,
1 _
Atz = — gul™' inB, uz =0 on 9B. (30)

We have uz(x) > 0 and, by uniqueness, this function is radially symmetric. If we rewrite equation
(30) in radial coordinates (putting uz(x) = v(r) for |x| = r) we have

— 1p—2./\/ - 1 ~ —
—M PRy = A ——=g ()"

VJ/(@)
§

From this ordinary differential equation we see that u; decreases as |x| increases, therefore uz = Ug.
Hence, using the left hand side of (23) we have

[ ontax< [ o ax G1)
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We claim that

fgﬁu{’ dx=fgﬁu{7 dx+f gyith dx=fgu{’ dx. (32)
B¢ B¢ pB ¢ B ¢

Indeed, since by (30) A,uz = 0 in B, we have uz = C on B for some constant C. Furthermore,
since the integral of gy over B vanishes by assumption, we have

fgﬁug dx=C"P fgﬁdx =0.
B B

Finally, since, gy = g on B'\ B, and since g = 0 on B, the claim follows.

Equations (31) and (32) yield
51/P p
gut dx < fgbh dx.
Jyzaes fos

If g € G, using the variational characterization of u, together with the latter inequality, we find

~ ;g updx N fBgugdx N fBgugdx
[y Vugledx T [ Vuglpdx ~ [, [Vuglpdx

J(8) = J(®).
We have proved that g is a minimizer of J(g). Note that g is the unique minimizer by the strict
convexity of J(g) (proved in Theorem 1).

If fB go(x)dx = 0, we have B = Band & = 0, therefore, the theorem holds trivially in this case.
If J(g) = J(g) then g = g a.e. in B by the uniqueness of the minimizer. The proof of the theorem
is complete. m|

Remark. In case go(x) > 0, the set B in Theorem 3 is empty, and the minimizer 2 is the
increasing rearrangement gy € G. If go takes positive and negative values in a subset of positive
measure, the minimizer g is not in G, because g > 0. If fB go(x) dx < 0 then any g€ G with g < 0
is a minimizer of J(g) and J(g) = 0.

4 Conclusion

In case of p = 2, the biological implications of Theorems 2 and 3 are the following. To optimize
the persistence of the population, one must locate the favorable resources (such as food, water,
refuges, etc. ) as far as possible from the boundary of the region, and the unfavorable resources (if
any) in a neighborhood of the boundary. Indeed, this configuration maximizes J(g) (and minimizes
the principal eigenvalue A,).

The situation concerning the extinction of the population is more subtle. In case of absence
of unfavorable resources, to optimize the extinction we must locate the favorable resources in a
neighborhood of the boundary of Q. In case we have both favorable and unfavorable resources, it
is necessary to compare the amount of each of them. If the favorable resources are prevalent, one
should compensate the amount of unfavorable resources by the same amount of favorable ones
(this means the one should avoid the use of these two equivalent resources). The remaining part
of favorable resources must be located in a neighborhood of the boundary. Indeed, this configu-
ration minimizes J(g) (and maximizes A,). If the unfavorable resources are prevalent, there is an
arrangement of the resources so that J(g) = 0, which corresponds to Az = oo (we have extinction
of the population).

Our results depend strongly on the assumption that the exterior of € is hostile, which corre-
sponds to imposing a Dirichlet boundary condition. If the region Q is closed in the sense that indi-
viduals living in Q never cross the boundary (no-flux condition) then we have Neumann boundary
conditions, and the conclusions are quite different from those in the Dirichlet case. For example,
incase of N = 1, Q = (a,b) and fa b g(x)dx < 0, we have two minimizers, namely, the decreasing
rearrangement and the increasing rearrangement of g. For a proof of this results and other results
in case of Neumann boundary conditions, we refer to [12].
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