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Summary

This paper is concerned with minimization and maximization of the principal eigenvalue of p-Laplace equa-
tions depending on functions which belong to a class of rearrangements. In case of p = 2, this optimization
problems are motivated by the question of determining the most convenient spatial arrangement of favorable
and unfavorable resources for species to survive or to decline. We prove existence and uniqueness results,
and present some features of optimizers. The radial case is discussed in detail.
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Riassunto

Si studia il minimo ed il massimo del primo autovalore di un’equazione col p-Laplaciano contenente un
peso variabile in una classe di riordinamenti. Nel caso p = 2, questi problemi di ottimizzazione sono mo-
tivati dalla ricerca della distribuzione piú conveniente delle risorse in un determinato ambiente affinché si
abbia la sopravvivenza o la estinzione di una specie. Si trovano risultati di esistenza, unicitá, e rappresen-
tazione degli estremanti. Si studia, in particolare, il caso di domini radiali.

Parole chiave: p-Laplaciano, Primo autovalore, Riordinamenti, Ottimizzazione

1 Introduction

Suppose that Ω ⊂ R2 is a smooth bounded domain representing a region occupied by a population
that diffuses at rate D and grows or declines locally at a rate g(x), so that g(x) > 0 corresponds
to local growth and g(x) < 0 to local decline. Suppose that the exterior of Ω is hostile to the
population (individuals which across the boundary die). Suppose that the carrying capacity of the
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population is equal to K. If ϕ(x, t) is the population density, the global behavior of the population
is described by the diffusion equation

∂ϕ

∂t
= D∆ϕ + g(x)ϕ − K ϕ2 in Ω × (0,T ), ϕ = 0 on ∂Ω × (0,T ), (1)

where ∆ϕ denotes the spatial Laplacian of ϕ(x, t). A simplified form of the logistic equation (1)
has been introduced by Pierre François Verhulst about 175 years ago.

As proved in [1], equation (1) predicts persistence of the population if and only if λg < 1/D,
where λg is the (positive) principal eigenvalue in

∆u + λg(x)u = 0 in Ω, u = 0 on ∂Ω. (2)

The existence and variational characterization of the eigenvalues of (2) were established in [2].
Since the principal eigenvalue λg depends on g, it is very important to find its extreme values for
weights within the set of rearrangements of a given weight function g0(x). This investigation has
been done in the recent paper [3]. Related results were obtained in [4] and in [5]. Eigenvalues for
equations with sign changing weights have been discussed in [6].

In the present paper we investigate a more general equation. Namely, let Ω be a bounded
smooth domain in RN , and let g ∈ L∞(Ω) be a function (possibly sign changing) positive in a set
of positive measure. For p > 1, we consider the eigenvalue problem

−∆pu = λ gup−1, u > 0 in Ω, u = 0 on ∂Ω. (3)

Here λ is the principal eigenvalue which depends on Ω, p and g. In what follows, Ω and p will be
fixed, whereas, the function g may change, therefore we shall write λ = λg. It is well known that

λg = inf
v

{∫
Ω
|∇v|pdx∫

Ω
g|v|pdx

: v ∈ H1,p
0 (Ω),

∫
Ω

g|v|pdx > 0
}

=

∫
Ω
|∇ug|

pdx∫
Ω

gup
gdx

,

where ug ∈ H1,p
0 (Ω) is the principal (positive) eigenfunction, which we normalize so that∫

Ω

up
gdx = 1.

It is known that the normalized eigenfunction ug is positive and unique. For a discussion of
existence and uniqueness of the principal eigenvalue of problem (3), we refer to [7].

If E ⊂ RN is a measurable set we denote with |E| its Lebesgue measure. We say that two
measurable functions f (x) and g(x) defined in Ω have the same rearrangement if

|{x ∈ Ω : f (x) ≥ β}| = |{x ∈ Ω : g(x) ≥ β}| ∀β ∈ R.

If g0 ∈ L∞(Ω), we denote by G = G(g0) the class of its rearrangements. We assume g0(x) > 0 in
a subset of positive measure, and suppose g0 is not a constant. Let G be the closure of G in the
weak* topology of L∞(Ω). Note that, even if g0(x) > 0 in a subset of positive measure, we may
have g ∈ G with g(x) ≤ 0 in Ω. In this case, the set of functions v such that

∫
Ω

g|v|pdx > 0 is
empty, and we put λg = +∞.

The paper is organized as follows. In Section 2, we investigate minimization and maximiza-
tion of the principal eigenvalue λg for g ∈ G. We also give a representation of minimizer and
maximizer. In Section 3 we consider the radial case and find more precise results. Note that, in
case of p = 2, we find all results from [3], however, the present approach is slightly simpler. In
Section 4 we give an interpretation of our results for a population which diffuses according to
equation (1).
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2 Optimization of the principal eigenvalue

Let G be the class of rearrangements generated by a function g0(x) ∈ L∞(Ω) which is positive in
a subset of positive measure, and let G be the closure of G in the weak* topology of L∞(Ω). For
g ∈ G with g(x) > 0 in a subset of positive measure, we consider the problem

inf
g∈G

λg = inf
g∈G

∫
Ω
|∇ug|

pdx∫
Ω

gup
gdx

, (4)

where ug is a positive eigenfunction of problem (3) corresponding to g. Note that

inf
g∈G

λg = inf
g∈G

inf
v

{∫
Ω
|∇v|pdx∫

Ω
g|v|pdx

: v ∈ H1,p
0 (Ω),

∫
Ω

g|v|pdx > 0
}
. (5)

In case of g ∈ G with g(x) ≤ 0 in Ω we put λg = +∞. For g ∈ G, we define

J(g) =
1
λg
.

Of course, when g(x) ≤ 0 in Ω we have J(g) = 0. Otherwise, we have

J(g) = sup
v∈H1,p

0 (Ω)

∫
Ω

g|v|pdx∫
Ω
|∇v|pdx

=

∫
Ω

gup
gdx∫

Ω
|∇ug|

pdx
. (6)

Note that problem (4) is equivalent to problem

sup
g∈G

J(g) = sup
g∈G

sup
v∈H1,p

0 (Ω)

∫
Ω

g|v|pdx∫
Ω
|∇v|pdx

. (7)

We also investigate the problem

sup
g∈G

λg = sup
g∈G

∫
Ω
|∇ug|

pdx∫
Ω

gup
gdx

. (8)

Note that, problem (8) is equivalent to problem

inf
g∈G

J(g) = inf
g∈G

sup
v∈H1,p

0 (Ω)

∫
Ω

g|v|pdx∫
Ω
|∇v|pdx

. (9)

We will see that problems (7) and (9) are quite different. In our discussion, we make use of the
following strong results proved in [8] and [9]. For short, throughout the paper we shall write
increasing instead of non-decreasing, and decreasing instead of non-increasing.

Lemma 1 Let g : Ω → R and w : Ω → R be measurable functions, and suppose that every
level set of w has measure zero. Then there exists an increasing function φ such that φ(w) is
a rearrangement of g. Furthermore, there exists a decreasing function ψ such that ψ(w) is a
rearrangement of g.

Proof. The first assertion follows from Lemma 2.9 of [9]. The second assertion follows apply-
ing the first one to −w. �

Denote with G the weak closure of G in Lp(Ω), 1 ≤ p. It is well known that G is convex and
weakly sequentially compact (see for example Lemma 2.2 of [9]).
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Lemma 2 Let G be the set of rearrangements of a fixed function g0 ∈ Lp(Ω), p ≥ 1, and let
w ∈ Lq(Ω), q = p/(p − 1). If there is an increasing function φ such that φ(w) ∈ G then∫

Ω

g w dx ≤
∫

Ω

φ(w) w dx ∀g ∈ G,

and the function φ(w) is the unique maximizer relative to G. Furthermore, if there is a decreasing
function ψ such that ψ(w) ∈ G then∫

Ω

g w dx ≥
∫

Ω

ψ(w) w dx ∀g ∈ G,

and the function ψ(w) is the unique minimizer relative to G.

Proof. The first assertion follows from Lemma 2.4 of [9]. The the second assertion follows from
the first one putting φ(t) = ψ(−t). �

Lemma 3 Let G denote the set of rearrangements of a fixed function g0 ∈ Lp(Ω), p ≥ 1. Let
Ψ : Lp(Ω) → R be a convex functional sequentially continuous in the Lq(Ω) topology on Lp(Ω),
q =

p
p−1 . Then Ψ attains a maximum value relative to G.

Proof. See Theorem 7 of [8]. �

We recall that the Lq(Ω) topology on Lp(Ω) is the weak topology if 1 ≤ p < ∞, and the weak*
topology if p = ∞ [8].

Now, we prove some results about the map g 7→ J(g), where J(g) is defined as in (6).

Lemma 4 The map g 7→ J(g) is continuous with respect to the weak* topology in L∞(Ω).

Proof. If g(x) ≤ 0 in Ω then, J(g) = 0. We claim that, if gi ⇀ g in the weak* topology of L∞(Ω)
then J(gi) → 0 as i → ∞. By contradiction, suppose there is a subsequence (denoted again gi)
such that J(gi) ≥ ε for some positive ε. For each i, we must have gi > 0 in a set of positive
measure. From∫

Ω
giu

p
gi dx∫

Ω
|∇ugi |

pdx
≥ ε, (10)

recalling the normalization of ugi and the fact that gi(x) ≤ M for some constant M we get,∫
Ω

|∇ugi |
pdx ≤

1
ε

∫
Ω

giu
p
gi dx ≤

M
ε
.

It follows that, for a suitable subsequence (denoted again ugi), ugi ⇀ u weakly in the H1,p(Ω)
topology and ugi → u in the Ls(Ω) norm for some s > p, and the Lp(Ω) norm of u is one. We have

lim inf
i→∞

∫
Ω

|∇ugi |
pdx ≥

∫
Ω

|∇u|pdx > 0, (11)

and
lim
i→∞

∫
Ω

giu
p
gi dx =

∫
Ω

gup dx.

Since
∫
Ω

giu
p
gi dx > 0, and

∫
Ω

gup dx ≤ 0, we must have

lim
i→∞

∫
Ω

giu
p
gi dx = 0.

The last result and (11) contradict (10), hence, J(gi)→ 0 = J(g).
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Now, let g(x) > 0 in a set of positive measure, and let gi ⇀ g in the weak* topology in L∞(Ω).
We may assume that gi > 0 in a set of positive measure (depending on i). If ugi , ug are normalized
as usual, we have

J(gi) =

∫
Ω

giu
p
gi dx∫

Ω
|∇ugi |

pdx
≥

∫
Ω

giu
p
g dx∫

Ω
|∇ug|

pdx
= J(g)

∫
Ω

giu
p
g dx∫

Ω
gup

g dx
. (12)

Let 0 < ε < J(g). Since

lim
i→∞

∫
Ω

giu
p
g dx =

∫
Ω

gup
g dx,

by (12) we have

J(gi) > J(g) − ε for i > νε . (13)

As a consequence,∫
Ω

|∇ugi |
pdx ≤

1
J(g) − ε

∫
Ω

giu
p
gi dx ≤ C. (14)

It follows that, for a suitable subsequence (denoted again ugi), ugi ⇀ u weakly in the H1,p(Ω)
topology and ugi → u in the Ls(Ω) norm for some s > p. Hence,

lim inf
i→∞

∫
Ω

|∇ugi |
pdx ≥

∫
Ω

|∇u|pdx,

and
lim
i→∞

∫
Ω

giu
p
gi dx =

∫
Ω

gup dx.

Due to our normalization, the Lp(Ω) norm of u is one. Using the last two results we find

lim sup
i→∞

J(gi) = lim sup
i→∞

∫
Ω

giu
p
gi dx∫

Ω
|∇ugi |

pdx
≤

∫
Ω

gup dx∫
Ω
|∇u|pdx

≤ J(g). (15)

From (13) and (15) it follows that J(gi)→ J(g). We also remark that our proof yields ugi → ug in
the norm of H1,p(Ω). The proof of the lemma is complete. �

Lemma 5 The map g 7→ J(g) is Gateaux differentiable.

Proof. If g, gi ∈ G we have

J(g) +

∫
Ω

(gi − g)up
g dx∫

Ω
|∇ug|

pdx
=

∫
Ω

giu
p
g dx∫

Ω
|∇ug|

pdx
≤ J(gi) =

∫
Ω

giu
p
gi dx∫

Ω
|∇ugi |

pdx

=

∫
Ω

gup
gi dx∫

Ω
|∇ugi |

pdx
+

∫
Ω

(gi − g)up
gi dx∫

Ω
|∇ugi |

pdx
≤ J(g) +

∫
Ω

(gi − g)up
gi dx∫

Ω
|∇ugi |

pdx
.

(16)

Let ti > 0 be a sequence such that ti → 0 as i → ∞. Let g, h ∈ G and let gi = g + ti(h − g). Then,
by (16) we find

J(g) + ti

∫
Ω

(h − g)up
g dx∫

Ω
|∇ug|

pdx
≤ J(gi)

≤ J(g) + ti

∫
Ω

(h − g)up
gi dx∫

Ω
|∇ugi |

pdx
.

(17)
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Recall that we are using the normalization
∫
Ω

up
gi dx = 1. Since ti → 0 as i → ∞, we have gi → g

in the norm of L∞(Ω). As a consequence, by the proof of Lemma 4, the sequence ugi converges,
in the norm of H1,p(Ω), to ug. Therefore, from (17) we get

lim
t→0+

J(g + t(h − g)) − J(g)
t

=

∫
Ω

(h − g)up
g dx∫

Ω
|∇ug|

pdx
. (18)

The lemma follows. �

Lemma 6 The functional J(g) is convex; furthermore, if
∫
Ω

g0(x)dx ≥ 0 then J(g) is strictly
convex.

Proof. Let f , g ∈ G, let 0 < t < 1 and let w ∈ H1,p
0 (Ω). We have∫

Ω
(t f + (1 − t)g)|w|p dx∫

Ω
|∇w|pdx

= t

∫
Ω

f |w|p dx∫
Ω
|∇w|pdx

+ (1 − t)

∫
Ω

g|w|p dx∫
Ω
|∇w|pdx

.

By taking the superior of both sides relative to w ∈ H1,p
0 (Ω), we get

J(t f + (1 − t)g)) ≤ tJ( f ) + (1 − t)J(g),

that is, the convexity.
Now, suppose

∫
Ω

g0(x)dx ≥ 0. Then,
∫
Ω

g(x)dx ≥ 0 for all g ∈ G. For f , g ∈ G, assume
equality holds in the above inequality for some t ∈ (0, 1). Then,∫

Ω
(t f + (1 − t)g)up

t dx∫
Ω
|∇ut|

pdx
= t

∫
Ω

f up
f dx∫

Ω
|∇u f |

pdx
+ (1 − t)

∫
Ω

gup
g dx∫

Ω
|∇ug|

pdx
.

where ut, u f and ug are normalized functions corresponding to J(t f + (1 − t)g), J( f ) and J(g)
respectively. Since ∫

Ω
(t f + (1 − t)g)up

t dx∫
Ω
|∇ut|

pdx
= t

∫
Ω

f up
t dx∫

Ω
|∇ut|

pdx
+ (1 − t)

∫
Ω

gup
t dx∫

Ω
|∇ut|

pdx
,

it follows that ∫
Ω

f up
f dx∫

Ω
|∇u f |

pdx
=

∫
Ω

f up
t dx∫

Ω
|∇ut|

pdx
,

∫
Ω

gup
g dx∫

Ω
|∇ug|

pdx
=

∫
Ω

gup
t dx∫

Ω
|∇ut|

pdx
.

By the uniqueness of the normalized eigenfunction corresponding to J( f ) and to J(g), we must
have ut = u f = ug.

Consider first the case f and g are positive in a set of positive measure. Then, J( f ) > 0 and
J(g) > 0. Since

−∆pu f =
1√
J( f )

f up−1
f a.e. in Ω,

and
−∆pug =

1√
J(g)

gup−1
g a.e. in Ω,

with u f = ug, we have
1√
J( f )

f (x) =
1√
J(g)

g(x) a.e. in Ω.

Integrating over Ω we find J( f ) = J(g). Hence, f (x) = g(x) a.e. in Ω.
Consider now the case g ≤ 0. Since

∫
Ω

g(x)dx ≥ 0, we must have g = 0. Then, ug = 0, and the
previous proof shows that also u f = 0. But, u f = 0 implies f ≤ 0. Finally, since

∫
Ω

f (x)dx ≥ 0,
we must have f = 0 = g. The proof of the lemma is complete. �

Now we prove the main result of this section.
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Theorem 1 Let g0 be a bounded function in Ω, positive in a subset of positive measure. Let G be
the class of rearrangements generated by g0, and let J(g) be defined as in (6).
(i) The problem

max
g∈G

J(g)

has a solution; furthermore, if ĝ ∈ G is a maximizer then ĝ = φ
(
uĝ

)
for some increasing function

φ(t).
(ii) The problem

min
g∈G

J(g)

has a solution; if
∫
Ω

g0(x)dx ≥ 0, the minimizer ǧ is unique; if
∫
Ω

g0(x)dx > 0, we have ǧ = ψ
(
uǧ

)
for some decreasing function ψ(t); finally, if g0(x) ≥ 0 then the minimizer ǧ belongs to G.

Proof. Since J(g) is continuous with respect to the weak* topology of L∞(Ω) (by Lemma 4)
and since it is convex (by Lemma 6), a maximizer ĝ of J(g) exists on G (by Lemma 3). Since J(g)
is Gâteaux differentiable (by Lemma 5), if 0 < t < 1 and if gt = ĝ + t(g − ĝ), we have

J(ĝ) ≥ J(gt) = J(ĝ) + t

∫
Ω

(g − ĝ)up
ĝdx∫

Ω
|∇uĝ|

pdx
+ o(t) as t → 0.

It follows that ∫
Ω

(g − ĝ)up
ĝdx∫

Ω
|∇uĝ|

pdx
+

o(t)
t
≤ 0.

As t → 0, we find ∫
Ω

(g − ĝ)up
ĝdx ≤ 0.

Equivalently, we have∫
Ω

g up
ĝdx ≤

∫
Ω

ĝ up
ĝdx ∀g ∈ G. (19)

Recall that uĝ(x) > 0 a.e. in Ω, because ĝ ∈ G and G is generated by a function g0 which is positive
in a subset of positive measure. Hence, J(ĝ) > 0 and uĝ satisfies the equation

−∆puĝ =
1√
J(ĝ)

ĝ up−1
ĝ . (20)

By equation (20), the function uĝ cannot have flat zones neither in the set F1 = {x ∈ Ω : ĝ(x) < 0}
nor in the set F2 = {x ∈ Ω : ĝ(x) > 0}. By Lemma 1, there is an increasing function φ1(t) such that
φ1(up

ĝ ) is a rearrangement of ĝ(x) on F1 ∪ F2. Define

α = inf
x∈Ω\F1

up
ĝ (x).

Using (19), one proves that up
ĝ (x) ≤ α in F1 (see [10] for details). Define

β = sup
x∈Ω\F2

up
ĝ (x).

Using (19) again one shows that up
ĝ (x) ≥ β in F2. Now we put

φ̃(t) =


φ1(t) if 0 ≤ t < α
0 if α ≤ t ≤ β
φ1(t) if t > β.
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The function φ̃(t) is increasing and φ̃(up
ĝ ) is a rearrangement of ĝ(x) in Ω. Indeed, the functions ĝ

and φ̃(up
ĝ ) have the same rearrangement on F1 ∪ F2, and both vanish on Ω \ (F1 ∪ F2). By (19)

and Lemma 2 we must have ĝ = φ̃(up
ĝ ). Part (i) of the theorem follows with φ(t) = φ̃

(
tp).

Since the functional J(g) is continuous with respect to the weak* topology of L∞(Ω), and
since G is weakly compact, a minimizer ǧ exists in G. Assuming

∫
Ω

g0(x)dx ≥ 0, the uniqueness
of the minimizer follows from the strict convexity of J(g) (see Lemma 6). If

∫
Ω

g0(x)dx > 0, the
minimizer ǧ is positive in a subset of positive measure. Therefore, J(ǧ) > 0 and uǧ(x) > 0 a.e. in
Ω. If 0 < t < 1 and if gt = ǧ + t(g − ǧ), since J(g) is differentiable, we have

J(ǧ) ≤ J(gt) = J(ǧ) + t

∫
Ω

(g − ǧ)up
ǧdx∫

Ω
|∇uǧ|

pdx
+ o(t) as t → 0.

It follows that ∫
Ω

(g − ǧ)up
ǧdx ≥ 0.

Equivalently, we have∫
Ω

g up
ǧdx ≥

∫
Ω

ǧ up
ǧdx ∀g ∈ G. (21)

The function uǧ satisfies the equation

−∆puǧ =
1√
J(ǧ)

ǧ up−1
ǧ . (22)

By equation (22), the function uǧ cannot have flat zones neither in the set F3 = {x ∈ Ω : ǧ(x) > 0}
nor in the set F4 = {x ∈ Ω : ǧ(x) < 0}. By Lemma 1, there is a decreasing function ψ1(t) such
that ψ1(up

ǧ ) is a rearrangement of ǧ(x) on F3 ∪F4. Following the proof of Theorem 2.1 of [10], we

introduce the classW of rearrangements of our minimizer ǧ. Of course,W ⊂ G. Define

γ = inf
x∈Ω\F3

up
ǧ (x).

Using (21), one proves that up
ǧ (x) ≤ γ in F3. Define

δ = sup
x∈Ω\F4

up
ǧ (x).

Using (21) again one shows that up
ǧ (x) ≥ δ in F4. Now we put

ψ̃(t) =


ψ1(t) if 0 ≤ t < γ
0 if γ ≤ t ≤ δ
ψ1(t) if t > δ.

The function ψ̃(t) is decreasing and ψ̃(up
ǧ ) is a rearrangement of ǧ(x) in Ω. Indeed, the functions ǧ

and ψ̃(up
ǧ ) have the same rearrangement on F3 ∪ F4, and both vanish on Ω \ (F3 ∪ F4). By (21)

and Lemma 2 we must have ǧ = ψ̃(up
ǧ ) ∈ W.

Note that, in general, the minimizer ǧ does not belong to G (see next theorem). Assuming
g0(x) ≥ 0, we can prove that ǧ ∈ G. Indeed, by (22), the function uǧ cannot have flat zones in
the set F = {x ∈ Ω : ǧ(x) > 0}. If |F| < |Ω|, since ǧ ∈ G, by Lemma 2.14 of [9] we have
|F| ≥ |{x ∈ Ω : g0(x) > 0}|. Therefore there is g1 ∈ G such that its support is contained in F. By
Lemma 1, there is a decreasing function ψ1(t) such that ψ1(up

ǧ ) is a rearrangement of g1(x) on F.
Define

γ = inf
x∈Ω\F

up
ǧ (x).
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Using (21), one proves that up
ǧ (x) ≤ γ in F. By using equation (21) once more we find that

up
ǧ (x) < γ a.e. in F. Now define

ψ̃(t) =

{
ψ1(t) if 0 ≤ t < γ
0 if t ≥ γ.

The function ψ̃(t) is decreasing and ψ̃(up
ǧ ) is a rearrangement of g1 ∈ G on Ω. Indeed, the functions

g1 and ψ̃(up
ǧ ) have the same rearrangement on F, and both vanish on Ω \ F. By (21) and Lemma 2

we must have ǧ = ψ̃(up
ǧ ) ∈ G. Hence, in case of |F| < |Ω|, the conclusion follows with ψ(t) = ψ̃(tp).

If |F| = |Ω|, the proof is easier and we do not need the introduction of the function g1. The theorem
follows. �

Remark. By the last assertion of the previous theorem, if g0(x) ≥ 0 then the minimizer ǧ
belongs to G. We may ask what happens if g0(x) is sign changing. Well, again by the previous
theorem, provided

∫
Ω

g0(x)dx > 0, we have ǧ = ψ
(
uǧ

)
for some decreasing function ψ(t). In this

situation, the function ǧ (which belongs to the enlarged set G) cannot belong to G since ǧ cannot
be sign changing, as the following theorem shows.

Theorem 2 Suppose u ∈ H1,p
0 (Ω) ∩ H2(Ω) ∩C0(Ω) satisfies u(x) > 0 in Ω and

−∆pu = Λψ(u)up−1 a.e. in Ω

for some positive Λ and some decreasing bounded function ψ. Then, either ∆u ≤ 0 or ∆u ≥ 0 a.e.
in Ω.

Proof. By contradiction, suppose that the essential range of ∆pu contains positive and negative
values. Since u > 0 and −∆pu = Λψ(u)up−1, ψ(t) takes positive and negative values for t > 0. Let

β = sup{t : ψ(t) ≥ 0},

Ωβ = {x ∈ Ω : u(x) > β}.

By our assumptions, the open set Ωβ is not empty. On the other side, since ψ is decreasing and
u > 0 we have

−∆pu < 0 in Ωβ, u = β on ∂Ωβ.

The maximum principle for p-subharmonic functions yields u(x) ≤ β in Ωβ. This contradicts the
definition of Ωβ, and the theorem follows. �

3 The radial case

In this section, let Ω = B be a ball centered in the origin. A function u defined in B is Schwarz
symmetric if and only if all sets {x ∈ Ω : u(x) > t}, ∀t ∈ R, are balls centered in the origin. In
this case we write u = u]. If u is not Schwarz symmetric, we associate to u a rearrangement u]

which is Schwarz symmetric. The function u] is named the Schwarz decreasing rearrangement of
u. We also use the function u], a rearrangement of u which is radially symmetric and increasing
with respect to |x|. The following results are well known.

Lemma 7 Let Ω = B.
i) If f (x) and g(x) belong to L∞(Ω) then∫

Ω

f ](x)g](x)dx ≤
∫

Ω

f (x)g(x)dx ≤
∫

Ω

f ](x)g](x)dx. (23)
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ii) If u ∈ H1,p
0 (Ω), u(x) ≥ 0 then u] ∈ H1,p

0 (Ω), u](x) ≥ 0 and∫
Ω

|∇u|pdx ≥
∫

Ω

|∇u]|pdx. (24)

Furthermore, if equality holds in the latter inequality, and

|{x ∈ B : ∇u](x) = 0}| = 0

then u(x) = u](x) in Ω.

Proof. See, for example, [11]. Note that, inequality (i) is often proved for non negative func-
tions. However, replacing f by f + M and g by g + M with a suitable constant M, one gets the
result for bounded functions. �

Theorem 3 Let B be a ball centered in the origin, and let g0 be a bounded function in B. Let G be
the class of rearrangements generated by g0, and let J(g) be defined as in (6). Then, for all g ∈ G
we have
1) J(g) ≤ J(g]); furthermore, if J(g) = J(g]) > 0 then g(x) = g](x) a.e. in B.
2) If

∫
B g0(x)dx ≥ 0 then J(g) ≥ J(g̃), where g̃ = (1 − χB̃)g], B̃ being a ball concentric with B and

such that
∫

B̃ g] dx = 0; if J(g) = J(g̃) then g = g̃ a.e. in B.

Proof. The proof is essentially the same as that of Theorem 3 of [3], where p = 2. For general
p, if g ∈ G and if ug is the corresponding eigenfunction, we have

J(g) =

∫
B g up

gdx∫
B |∇ug|

pdx
. (25)

Since (up
g )] = (u]g)p, by the right hand side of (23) we have∫

B
g up

g dx ≤
∫

B
g] (u]g)pdx.

Using the latter inequality and (24), from (25) we find

J(g) ≤

∫
B g] (u]g)pdx∫
B |∇u]g|pdx

. (26)

Note that u]g ≥ 0 and u]g ∈ H1,p
0 (Ω). Hence, recalling the variational characterization of the

maximizer ug] , by (26) we find

J(g) ≤

∫
B g] (ug])

pdx∫
B |∇ug] |

pdx
= J(g]). (27)

Now, let J(g) = J(g]) > 0. From (26) and (27) we get∫
B g up

gdx∫
B |∇ug|

pdx
=

∫
B g] (u]g)pdx∫
B |∇u]g|pdx

=

∫
B g] (ug])

pdx∫
B |∇ug] |

pdx
.

The latter equation together with (23) and (24) yield∫
B
|∇ug|

pdx =

∫
B
|∇u]g|

pdx. (28)
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Furthermore, by the variational characterization of the maximizer ug] and by its uniqueness we

must have u]g = ug] .
The function ug] satisfies

−∆pug] =
1√

J(g])
g] up−1

g]
in B, ug] = 0 on ∂B. (29)

Since ug] = u]g, ug] is radially symmetric, positive and decreasing. With v(r) = ug] and z(r) =
1√
J(g])

g] for |x| = r, equation (29) can be rewritten as

(rN−1(−v′)p−1)′ = rN−1z(r)(v(r))p−1.

Integration over (0, r) yields

rN−1(−v′)p−1 =

∫ r

0
tN−1z(t)(v(t))p−1dt.

Recall that z(r) is decreasing and positive near r = 0. Hence, z(r)(v(r))p−1 is strictly positive near
r = 0. Therefore, from the previous equation, we find that v′(r) < 0 for 0 < r < r0, with r0 ≤ R.
We claim that r0 = R. By contradiction, let r0 < R, v(r0) > 0 and v′(r0) = 0. This is possible
only if z(r0) < 0. Then, since z(r) is decreasing, we have z(r) < 0 on (r0,R). It follows that
z(r)(v(r))p−1 < 0 on (r0,R), and that v′(r) > 0 there. This cannot happen, since v(r) is decreasing
and v(R) = 0. Therefore, v′(r) vanishes only at r = 0, and ∇ug] = ∇u]g vanishes only at the origin.

Hence, by (28) and Lemma 7 (ii), we have ug = u]g = ug] .
The functions ug and ug] satisfy

−∆pug =
1√
J(g)

gup−1
g , −∆pug] =

1√
J(g])

g](ug])
p−1.

Hence, since J(g) = J(g]) and ug = ug] > 0 a.e. in Ω we must have g = g] almost everywhere in
B. Part 1) of the theorem is proved.

Now, assume
∫

B g0(x)dx > 0. To prove that g̃ = (1− χB̃)g] is a minimizer of J(g), let ug̃ be the
maximizer of

w 7→

∫
B g̃|w|pdx∫
B |∇w|pdx

.

Since g̃(x) > 0 in a set of positive measure, we have J(g̃) > 0 and

J(ug̃) =

∫
B g̃up

g̃dx∫
B |∇ug̃|

pdx
.

Moreover,

−∆pug̃ =
1√
J(g̃)

g̃ up−1
g̃ in B, ug̃ = 0 on ∂B. (30)

We have ug̃(x) ≥ 0 and, by uniqueness, this function is radially symmetric. If we rewrite equation
(30) in radial coordinates (putting ug̃(x) = v(r) for |x| = r) we have

−(rN−1|v′|p−2v′)′ = rN−1 1√
J(g̃)

g̃ (v(r))p−1.

From this ordinary differential equation we see that ug̃ decreases as |x| increases, therefore ug̃ = u]g̃.
Hence, using the left hand side of (23) we have∫

B
g]u

p
g̃ dx ≤

∫
B

gup
g̃ dx. (31)
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We claim that∫
B

g]u
p
g̃ dx =

∫
B̃

g]u
p
g̃ dx +

∫
B\B̃

g]u
p
g̃ dx =

∫
B

g̃up
g̃ dx. (32)

Indeed, since by (30) ∆pug̃ = 0 in B̃, we have ug̃ = C on B̃ for some constant C. Furthermore,
since the integral of g] over B̃ vanishes by assumption, we have∫

B̃
g]u

p
g̃ dx = Cp

∫
B̃

g]dx = 0.

Finally, since, g] = g̃ on B \ B̃, and since g̃ = 0 on B̃, the claim follows.
Equations (31) and (32) yield ∫

B
g̃up

g̃ dx ≤
∫

B
gup

g̃ dx.

If g ∈ G, using the variational characterization of ug together with the latter inequality, we find

J(g) =

∫
B g up

gdx∫
B |∇ug|

pdx
≥

∫
B g up

g̃dx∫
B |∇ug̃|

pdx
≥

∫
B g̃ up

g̃dx∫
B |∇ug̃|

pdx
= J(g̃).

We have proved that g̃ is a minimizer of J(g). Note that g̃ is the unique minimizer by the strict
convexity of J(g) (proved in Theorem 1).

If
∫

B g0(x)dx = 0, we have B̃ = B and g̃ = 0, therefore, the theorem holds trivially in this case.
If J(g) = J(g̃) then g = g̃ a.e. in B by the uniqueness of the minimizer. The proof of the theorem
is complete. �

Remark. In case g0(x) ≥ 0, the set B̃ in Theorem 3 is empty, and the minimizer g̃ is the
increasing rearrangement g] ∈ G. If g0 takes positive and negative values in a subset of positive
measure, the minimizer g̃ is not in G, because g̃ ≥ 0. If

∫
B g0(x) dx < 0 then any g ∈ G with g ≤ 0

is a minimizer of J(g) and J(g) = 0.

4 Conclusion

In case of p = 2, the biological implications of Theorems 2 and 3 are the following. To optimize
the persistence of the population, one must locate the favorable resources (such as food, water,
refuges, etc. ) as far as possible from the boundary of the region, and the unfavorable resources (if
any) in a neighborhood of the boundary. Indeed, this configuration maximizes J(g) (and minimizes
the principal eigenvalue λg).

The situation concerning the extinction of the population is more subtle. In case of absence
of unfavorable resources, to optimize the extinction we must locate the favorable resources in a
neighborhood of the boundary of Ω. In case we have both favorable and unfavorable resources, it
is necessary to compare the amount of each of them. If the favorable resources are prevalent, one
should compensate the amount of unfavorable resources by the same amount of favorable ones
(this means the one should avoid the use of these two equivalent resources). The remaining part
of favorable resources must be located in a neighborhood of the boundary. Indeed, this configu-
ration minimizes J(g) (and maximizes λg). If the unfavorable resources are prevalent, there is an
arrangement of the resources so that J(ǧ) = 0, which corresponds to λǧ = ∞ (we have extinction
of the population).

Our results depend strongly on the assumption that the exterior of Ω is hostile, which corre-
sponds to imposing a Dirichlet boundary condition. If the region Ω is closed in the sense that indi-
viduals living in Ω never cross the boundary (no-flux condition) then we have Neumann boundary
conditions, and the conclusions are quite different from those in the Dirichlet case. For example,
in case of N = 1, Ω = (a, b) and

∫ b
a g(x)dx < 0, we have two minimizers, namely, the decreasing

rearrangement and the increasing rearrangement of g. For a proof of this results and other results
in case of Neumann boundary conditions, we refer to [12].



G. Porru: Optimization of eigenvalues 56

References

[1] Cantrell, R.S., Cosner, C. Diffusive logistic equations with indefinite weights: population
models in disrupted environments, Proc. Roy. Soc. Edinburgh, 112A (1989), 293–318.

[2] Cantrell, R.S., Cosner, C. The effects of spatial heterogeneity in population dynamics, J. Math.
Biol., 29 (1991), 315–338.

[3] Cosner, C., Cuccu, F., Porru, G. Optimization of the first eigenvalue of equations with indefi-
nite weights, Advanced Nonlinear Studies, 13 (2013), 79–95. .

[4] Cuccu, F., Porru, G. Optimization in eigenvalue problems, Dyn. Contin. Discrete Impuls. Syst.
Ser. A Math. Anal., 10 (2003), 51–58.

[5] Ghergu, M., Radulescu, V. Existence and nonexistence of entire solutions to the logistic dif-
ferential equation. Abstr. Appl. Anal., 17 (2003), 995–1003.

[6] Manes, A., Micheletti, A.M. Un’estensione della teoria variazionale classica degli autovalori
per operatori ellittici del secondo ordine, Boll. Unione Mat. Ital. Ser IV, 7 (1973), 285–301.

[7] Kawohl, B., Lucia, M., Prashanth, S. Simplicity of the first eigenvalue for indefinite quasilinear
problems. Adv. Differential Equations, 12 (2007), 407–434.

[8] Burton, G.R. Rearrangements of functions, maximization of convex functionals and vortex
rings. Math. Ann. 276 (1987), 225–253.

[9] Burton, G.R. Variational problems on classes of rearrangements and multiple configurations
for steady vortices. Ann. Inst. Henri Poincare. 6 (1989), 295–319.

[10] Burton, G.R., McLeod, J.B. Maximisation and minimisation on classes of rearrangements,
Proc. Roy. Soc. Edinburgh Sect. A, 119 (1991), 287–300.

[11] Kawohl, B. Rearrangements and Convexity of Level Sets in PDE, Lectures Notes in Mathe-
matics, 1150, (1985) Berlin.

[12] Jha, K., Porru, G. Minimization of the principal eigenvalue under Neumann boundary con-
ditions, Numerical Functional Analysis and Optimization, 32 (2011), 1146–1165.


