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Summary

A second-order quasi-linear partial differential equation of mixed elliptic-hyperbolic type, which both
mimics one introduced by A. Busemann in gas dynamics and arises in the study of Minkowski spaces, is
considered.

Key words: Second-order quasi-linear partial differential equations of mixed type, Bäcklund
transformations, minimal surfaces, space-like maximal surfaces in Minkowski space, D’Alembert
equation, initial value problems.

Riassunto

In questa comunicazione discutiamo un’equazione differenziale alle derivate parziali del second’ordine,
quasi-lineare e di tipo misto ellittico-iperbolico, che imita un’altra introdotta da A. Busemann nella dina-
mica dei gas e si presenta anche nella teoria degli spazi di Minkowski.

Parole chiave: Equazioni differenziali alle derivate parziali del second’ordine e del tipo misto
ellittico-iperbolico, trasformazioni di Bäcklund, superfici minime, superfici massime nello spazio
di Minkowski, equazione di D’Alembert, problemi con valori iniziali.

1 Introduction

1.1 Background

Consider the three-dimensional, steady, irrotational flow of a perfect gas. Let x, y, z = space
rectangular coordinates, ϕ = velocity potential, σ = sound speed. Standard principles of fluid
dynamics (i.e. the equation of continuity, the Euler equations of motion, an equation of state and
Bernoullis law) yield the following equations — see e.g. [14], [37], [48]. First,

σ = a suitable function of ∇ϕ

†Lecture given on the occasion of the 70th birthday of Mario Marino, 3-4 May 2013, Catania
∗e-mail: giorgiotalenti@gmail.com
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— for instance,

σ(∇ϕ) = A
√

B2 − ϕ2
x − ϕ

2
y − ϕ

2
z (A, B = Constants)

in the case where the flow is adiabatic and isentropic. Second,

[
σ2(∇ϕ) − ϕ2

x

]
· ϕxx +

[
σ2(∇ϕ) − ϕ2

y

]
· ϕyy +

[
σ2(∇ϕ) − ϕ2

z

]
· ϕzz +

−2ϕxϕy · ϕxy − 2ϕxϕz · ϕxz − 2ϕyϕz · ϕyz = 0

— a quasi-linear partial differential equation governing ϕ.
According to works [15] and [16] by Buseman1, the flow is conical if the set of its streamlines2

is invariant under homothetic transformations. Equivalently, the flow is conical if all its isoclines3

are rays from the origin. As is easy to see, an irrotational flow is conical if and only if its velocity
potential ϕ obeys(

xϕxx + yϕxy + zϕxz
)

: ϕx =
(
xϕxy + yϕyy + zϕyz

)
: ϕy =

(
xϕxz + yϕyz + zϕzz

)
: ϕz

— i.e. the first-order derivatives of ϕ are homogeneous functions of x, y, z and all have the same
degree.

Busemann showed that if the flow is conical and u, v,w denote the components of the velocity,
i.e.

u = ϕx, v = ϕy, w = ϕz,

then the following holds. First, the Jacobian determinant of u, v,w vanishes identically — any
component of the velocity is a function of the remaining two. Second, the equation governing w
as a function of u and v takes the form

1 − v2

σ2 − 2
vw
σ2

∂w
∂v

+

(
1 −

w2

σ2

) (
∂w
∂v

)2 · ∂2w
∂u2 +

2
[

uv
σ2 +

vw
σ2

∂w
∂u

+
uw
σ2

∂w
∂v
−

(
1 −

w2

σ2

)
∂w
∂u

∂w
∂v

]
·
∂2w
∂u∂v

+1 − u2

σ2 − 2
uw
σ2

∂w
∂u

+

(
1 −

w2

σ2

) (
∂w
∂u

)2 · ∂2w
∂v2 = 0.

Aerodynamicists often lower the number of independent variables by virtue of geometric or
physical hypotheses. The conical-flow analysis of Busemann provides a mean of descending from
a three-dimensional to a two-dimensional potential equation. Several authors put conical flows to
use, e.g. Germain [28], [29].

Let us call dimensional analysis into play, and zoom in. Let h and k be constants obeying

h > σ(0, 0, h), k2 ·

(
k2

σ2(0, 0, h)
− 1

)
= 1

1Adolf Busemann (Lübeck 1901, Boulder 1986) was an eminent aerospace engineer and applied mathematician,
and a pioneer of supersonic aerodynamics. He designed the Busemann biplane, which emits no sonic shock waves, and
invented the swept wing equipping most modern aircrafts.

2Streamlines = trajectories of the velocity field = orbits of

dx : ϕx(x, y, z) = dy : ϕy(x, y, z) = dz : ϕz(x, y, z).

3Isoclines = paths along which the velocity field keeps a constant direction = orbits of(
ϕxxdx + ϕxydy + ϕxzdz

)
: ϕx =

(
ϕxydx + ϕyydy + ϕyzdz

)
: ϕy =

(
ϕxzdx + ϕyzdy + ϕzzdz

)
: ϕz.
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— h is the third component of a supersonic velocity, k is a normalizing factor. Replacing

u, v,w

respectively by

ε · u, ε · v, h + ε · k · w

in the equation above, and letting

ε approach 0,

result in1 − (
∂w
∂v

)2 · ∂2w
∂u2 + 2

∂w
∂v

∂w
∂u
·
∂2w
∂u∂v

+

1 − (
∂w
∂u

)2 · ∂2w
∂v2 = 0

— a toy version of the full Busemann equation.

1.2 Subject

Motivated by the foregoing arguments, but loyal to more habitual notations, in the present report
we comment on the following equation

(u2
y − 1) · uxx − 2uyux · uxy + (u2

x − 1) · uyy = 0, (1)

where x and y denote the independent variables and u stands for a real-valued function of x and y.
Equation (1) has a mixed elliptic-hyperbolic character. Since the coefficient matrix[

u2
y − 1 −uxuy

−uxuy u2
x − 1

]
causes eigenvalues to equal (−1) and (u2

x +u2
y −1), a solution u to (1) is elliptic in any region where

u2
x + u2

y < 1,

and is hyperbolic where

u2
x + u2

y > 1.

For instance, the formulas

u(x, y) = log
(√

x2 + y2 +

√
1 + x2 + y2

)
, u(x, y) = arcsin

√
x2 + y2,

represent an everywhere elliptic solution and an everywhere hyperbolic solution to equation (1),
respectively. The formula

u(x, y) = log
(
cosh x
cosh y

)
supplies a solution to (1) whose streamlines obey

sinh |x| · sinh |y| = Constant,

and whose type changes — elliptic in the region where

sinh |x| · sinh |y| < 1,

hyperbolic where

sinh |x| · sinh |y| > 1.
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2 Digressing on Bäcklund transformations

2.1 General

Loosely speaking, a Bäcklund transformation converts a solution to some partial differential equa-
tion into a different solution to the same equation, or into a solution to another partial differential
equation. Such a transformation allows an extra solution to a partial differential equation to come
out if one particular solution to the same or another equation is in hand. A Bäcklund transfor-
mation typically looks like a first-order partial differential system, which relates two functions in
a convenient way and drives them to obey partial differential equations individually. Bäcklund
transformations may be of considerable service; however, no systematic way of finding them is
available. These transformations trace back to works by L. Bianchi and A.V. Bäcklund in differ-
ential geometry, and play a role especially in soliton theory and integrable systems. They come
up in gas dynamics too, and are a key to the present work. Relevant references include [3], [24],
[44], [45], [46], [51].

2.2 Specimens

(i) If a11, a12, a21, a22 are tractable functions of x and y and

a11a22 − a12a21 , 0

everywhere, then the transformation attached to the following formula

∇v =

[
0 −1
1 0

] [
a11 a12
a21 a22

]
∇u

generalizes Cauchy-Riemann equations. It turns any suitably smooth solution of

div
{[

a11 a12
a21 a22

]
∇u

}
= 0,

— a second-order linear partial differential equation in divergence form — into a solution of

div

 1
a11a22 − a12a21

[
a11 a12
a21 a22

]T

∇v

 = 0

which obeys the orthogonality condition

inner product of
[

a11 a12
a21 a22

]
∇u and ∇v = 0.

(ii) Let a11, a12, a22 be bounded, measurable functions of x and y such that

a11 , 0, a22 , 0;

let ϕ obey

a11ϕxx + 2a12ϕxy + a22ϕyy = 0

— a second-order linear partial differential equation in non-divergence form. If[
u
v

]
= ∇ϕ,
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then u and v are the images of one another under the following transformation

∇v = −
1

a22

[
0 −a22

a11 2a12

]
∇u, ∇u = −

1
a11

[
2a12 a22
−a11 0

]
∇v,

and obey

div
{

1
a22

[
a11 2a12
0 a22

]
∇u

}
= 0, div

{
1

a11

[
a11 0
2a12 a22

]
∇v

}
= 0.

(iii) Suppose 0 ≤ % 7→ j(%) is a smooth real-valued function, whose derivative vanishes at zero.
Let u be an extremal of the variational integral"

j
(√

u2
x + u2

y

)
dx dy,

i.e. a sufficiently smooth solution to

∂

∂x

d j
d%

(√
u2

x + u2
y

) ux√
u2

x + u2
y

 +
∂

∂y

d j
d%

(√
u2

x + u2
y

) uy√
u2

x + u2
y

 = 0.

The hodograph polar coordinates % and ω given by

∇u = % ·

[
cosω
sinω

]
,

i.e. the length and the azimuth of the gradient, are related by a Bäcklund transformation, namely

∇ω =

[
0 1
−1 0

] [
cosω − sinω
sinω cosω

] [
% j ′′(%)/ j ′(%) 0

0 1

] [
cosω sinω
− sinω cosω

]
∇%

%
.

For instance, any solution u to equation (1) satisfies

1
%

∂%

∂x
+
∂ω

∂y
: %2 cosω =

1
%

∂%

∂y
−
∂ω

∂x
: %2 sinω

= − sinω
∂ω

∂x
+ cosω

∂ω

∂y
.

(iv) The transformation attached to the formula

u = log

2v2
x + v2

y

v2


maps solutions to

∆v = 0

(Laplace equation) into solutions to

∆u = exp(u)

(Liouville equation).



G. Talenti: A note on Busemann equation 62

(v) The transformations attached to the formulas[
ux

uy

]
=

(
1 + v2

)−1/2
[

1
v

]
, v =

uy

ux
,

are the inverse of one another. They convert any suitably smooth solution u to

u2
x + u2

y = 1

(a prototypal eikonal equation of geometrical optics) into a solution v to

vx + vvy = 0

(inviscid Burgers equation), and vice versa — the level-lines and the shock-line of v are the iso-
clines and the caustic of u, respectively.

(vi) Let ε be a positive constant parameter. The transformations attached to the formulas

vx = − 1
2εuv, vy = − 1

2

(
ux −

1
2εu2

)
v,

u = −2ε vx
v

appeared first in [20] and [32] and are currently known as Cole-Hopf transformations. They are
the inverse of one another, and map solutions to

uy + uux = ε · uxx

(viscous Burgers equation) into solutions to

vy = ε · vxx

(heat equation), and vice versa.

(vii) If p is a constant parameter such that 1 < p < ∞, the following recipe

∇v = |∇u|p−2
[

0 1
−1 0

]
· ∇u, ∇u = |∇u|p/(p−1)−2

[
0 −1
1 0

]
· ∇v,

defines transformations that are the inverse of one another. They map any solution u of[
(p − 1)u2

x + u2
y

]
· uxx + 2(p − 2)uxuy · uxy +

[
u2

x + (p − 1)u2
y

]
· uyy = 0

(p-Laplace equation) into a solution v of[
v2

x + (p − 1)v2
y

]
· vxx − 2(p − 2)vxvy · vxy +

[
(p − 1)v2

v + v2
y

]
· uyy = 0

(p/(p − 1)-Laplace equation) in such a way that

uxvx + uyvy = 0.

Relevant information is in [4], [5], [6] and [7].
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3 Maximal space-like surfaces in Minkowski space

3.1 General

Elliptic solutions to (1) obey both

u2
x + u2

y < 1,

and

∂

∂x

 ux√
1 − u2

x − u2
y

 +
∂

∂y

 uy√
1 − u2

x − u2
y

 = 0.

Recall that the equations

metric = (dx)2 + (dy)2 − (du)2,

area of a space-like graph u =

" √
1 − u2

x − u2
y dx dy,

hold in the three-dimensional Minkowski space. Therefore, the elliptic solutions to (1) ren-
der an appropriate area a maximum — they represent space-like maximal surfaces in the three-
dimensional Minkowski space.

Selected apropos references include [1], [2], [8], [9], [10], [11], [12], [13], [17], [18], [19],
[25], [26], [27], [33], [34], [39], [40], [38], [41], [47], [49], [50].

3.2 Formulas

Because of the previous observation, elliptic solutions to equation (1) can be parametrically rep-
resented by Kobayashi formulas [34]:

λ, µ = real parameters,

x = Re
1
2

∫ λ+iµ
f (ζ)

[
1 + g(ζ)2

]
dζ,

y = Re
i
2

∫ λ+iµ
f (ζ)

[
1 − g(ζ)2

]
dζ,

u = −Re
∫ λ+iµ

f (ζ)g(ζ) dζ, (2)

— here f is holomorphic, g is a meromorphic function such that |g| , 1 and f · g2 is holomorphic.
For example, putting f (ζ) = 6(1 + ζ)2 and g(ζ) = (1 − ζ)/(1 + ζ) into Kobayashi formulas

results in the quartic equation

(x − u)4 = 27(x2 + y2 − u2),

which supplies an elliptic solution to (1) and whose graph is shown in Figure 1.
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Figure 1: An elliptic solution to equation (1).

3.3 Allied minimal surfaces

Elliptic solutions to equation (1) are closely related to non-parametric minimal surfaces in Eu-
clidean three-dimensional space, whose theory can be found in such books as [21], [23], [42],
[43]. Here is a reason: apposite Bäcklund transformations convert the objects in question into
each other. These transformations allow statements on elliptic solutions of (1) to follow auto-
matically from properties of minimal surfaces 4. In particular, they put maximal surfaces from
Minkowski three-dimensional space and customary minimal surfaces on the same footing.

The Bäcklund transformations attached to the following equations

∇v =
1√

1 − |∇u|2

[
0 −1
1 0

]
· ∇u, ∇u =

1√
1 + |∇v|2

[
0 1
−1 0

]
· ∇v, (3)

amount to rotating gradients by ninety degrees, then stretching them suitably. They are the inverse
of one another, and enjoy properties (i) to (iii) listed below.

(i) The former acts on elliptic solutions u to equation (1) — such solutions are just what make

1√
1 − |∇u|2

[
0 −1
1 0

]
· ∇u,

well-defined and a gradient.

(ii) The latter acts on solutions v to either

∂

∂x

 vx√
1 + v2

x + v2
y

 +
∂

∂y

 vy√
1 + v2

x + v2
y

 = 0.

4For instance, Bernstein-Calabi theorem on elliptic entire solutions to equation (1) is demonstrated in [47] along
this line.
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or

(v2
y + 1) · vxx − 2vyvx · vxy + (v2

x + 1) · vyy = 0,

i.e. on functions whose graphs are minimal surfaces. Such functions are precisely what make

1√
1 + |∇v|2

[
0 1
−1 0

]
· ∇v,

a gradient.

(iii) Both turn any elliptic solution to (1) into a non-parametric minimal surface, and simultane-
ously turn any non-parametric minimal surface from Euclidean three-dimensional space into an
elliptic solution to (1).

Either one of equations (3) implies(
1 − u2

x − u2
y

)
·
(
1 + v2

x + v2
y

)
= 1, uxvx + uyvy = 0 (4)

— a special first-order fully non-linear partial differential system having a rotation-invariant struc-
ture. Conversely, system (4) plus the condition∣∣∣∣∣∣ ux uy

vx vy

∣∣∣∣∣∣ > 0

imply both equations (3). The following extra statements ensue.

(iv) The Bäcklund transformations in hand decouple solution pairs to system (4).

(v) The entries of any solution pair to system (4), whose Jacobian determinant does not change
its sign, represent an elliptic solution to equation (1) and a standard minimal surface, respectively.
Thus system (4) pairs off elliptic solutions to equation (1) and minimal surfaces.

The notion of Chaplygin gas does enter our game. According to usage, ”Chaplygin gas” is
a nickname for a hypothetical fluid whose adiabatic constant equals (−1), i.e. whose density and
pressure are inversely proportional to one another. An aficionado might realize that the following
holds if units are appropriate. First: the Bäcklund transformations attached to equations (3) are
precisely those relating the velocity potential and the stream function of a Chaplygin gas. Second:
while the minimal surface equation governs the velocity potential, equation (1) governs the stream
function of a Chaplygin gas.

Here is a sample pair obeying (3):

u(x, y) = arcsin(sin x · sin y), v(x, y) = log
(
cos x
cos y

)
— the former entry is an elliptic solution to (1), the latter is Scherk’s minimal surface.

4 Hyperbolic solutions

4.1 Formulas

Hyperbolic solutions to equation (1) result from formulas of Gu and Li, [30], [31] and [36]:

λ, µ = real parameters,

x =

∫ λ

a(λ) cos λ dλ +

∫ µ

b(µ) cos µ dµ,

y =

∫ λ

a(λ) sin λ dλ +

∫ µ

b(µ) sin µ dµ,

u =

∫ λ

a(λ) dλ +

∫ µ

b(µ) dµ, (5)
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which involve two non-zero real functions a and b at user’s disposal, and imply

cos
(
λ − µ

2

)
· ux = cos

(
λ + µ

2

)
, cos

(
λ − µ

2

)
· uy = sin

(
λ + µ

2

)
,

2 sin(λ − µ) cos2
(
λ − µ

2

)
·

[
uxx uxy

uxy uyy

]
=

1
a(λ)

[
sin µ
− cos µ

]
·
[

sin µ − cos µ
]
−

1
b(µ)

[
sin λ
− cos λ

]
·
[

sin λ − cos λ
]
.

For instance, coupling Gu’s formulas and

a(λ) = cos(5λ), b(µ) = sin(
√

15µ),

leads to Figure 2; coupling the same formulas and

a(λ) = α sin(5λ), b(µ) =
β√
2πµ

(α, β = Constants),

leads to Figure 3.

Figure 2: A hyperbolic solution to (1).

4.2 Allied hyperbolic solutions

The Bäcklund transformations attached to the formulas

∇v =
1√

|∇u|2 − 1

[
0 −1
1 0

]
· ∇u, ∇u =

1√
|∇v|2 − 1

[
0 1
−1 0

]
· ∇v, (6)

are the inverse of one another, and enjoy properties (i) to (iv) listed below.
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Figure 3: Another hyperbolic solution to (1).

(i) Both act on hyperbolic solutions to equation (1).

(ii) They convert any hyperbolic solution u to equation (1) into another hyperbolic solution v to
the same equation.

(iii) They imply∣∣∣∣∣∣ ux uy

vx vy

∣∣∣∣∣∣ =
u2

x + u2
y√

u2
x + u2

y − 1
,

∣∣∣∣∣∣ ux uy

vx vy

∣∣∣∣∣∣ =
v2

x + v2
y√

v2
x + v2

y − 1
,

and ∣∣∣∣∣∣ ux uy

vx vy

∣∣∣∣∣∣ ≥ 2

— in particular, cause u and v to locally become genuine curvilinear coordinates.

Either one of equations (6) implies(
u2

x + u2
y − 1

)
·
(
v2

x + v2
y − 1

)
= 1, uxvx + uyvy = 0 (7)

— a special first-order fully non-linear partial differential system having a rotation-invariant struc-
ture. Conversely, system (7) plus the condition∣∣∣∣∣∣ ux uy

vx vy

∣∣∣∣∣∣ > 0

imply the two equations (6). The following results. First, the Bäcklund transformations in hand
decouple solution pairs to system (7). Second, both entries of any solution pair to (7), whose
Jacobian determinant does not change its sign, satisfy equation (1) — in other words, system (7)
pairs off solutions to equation (1).
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For instance, the formulas

u(x, y) = log
(

sinh x
cosh y

)
, v(x, y) = log

(
cosh x · sinh y +

√
1 + cosh2 x · sinh2 y

)
supply two allied hyperbolic solutions to (1). The formula

u(x, y) = log
(
cosh x
cosh y

)
was met in Section (1.2). It provides a solution to (1) that changes its type and has the following
two mates

v(x, y) = log
(
sinh x · sinh y +

√
sinh2 x · sinh2 y − 1

)
, v(x, y) = arcsin (sinh x · sinh y)

— the former is a pure hyperbolic solution to (1), the latter is a minimal surface.

4.3 D’Alembert equation

Suppose u and v are hyperbolic solutions to equation (1), and the foregoing equations (6) pair them
off. Here think of u and v as curvilinear coordinates, and think of x and y as functions of u and
v — in other words, interchange the role of dependent and independent variables.

The following statements hold.

(i) x and y obey both

x2
u + y2

u ≤ 1,
∂

∂v

[
x
y

]
=

√
1

x2
u + y2

u
− 1

[
0 −1
1 0

]
∂

∂u

[
x
y

]
(8)

and the following system(
∂x
∂u

)2

+

(
∂y
∂u

)2

+

(
∂x
∂v

)2

+

(
∂y
∂v

)2

= 1,
∂x
∂u
∂x
∂v

+
∂y
∂u
∂y
∂v

= 0. (9)

Incidentally, the latter has a noteworthy geometric significance. Letting E, F and G stand for
the coefficients of the Euclidean metric in curvilinear coordinates u and v, i.e.

(dx)2 + (dy)2 = E (du)2 + 2F du dv + G (dv)2,

allows it to read thus

E + G = 1, F = 0.

(ii) x and y obey D’Alembert equation.

(iii) u and v can be represented thus

u = (λ + µ)/
√

2,
x =

[
A(λ) + B(µ)

]
/
√

2,
v = (λ − µ)/

√
2,

y =
[
C(λ) + D(µ)

]
/
√

2
(10)

— here

λ, µ = parameters
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and A, B,C,D satisfy[
dA
dλ

(λ)
]2

+

[
dC
dλ

(λ)
]2

= 1,
[
dB
dµ

(µ)
]2

+

[
dD
dµ

(µ)
]2

= 1,

∣∣∣∣∣∣ dA(λ)/dλ dB(µ)/dµ
dC(λ)/dλ dD(µ)/dµ

∣∣∣∣∣∣ ≤ 0.

Proof of (i). Coupling

∇v =
1√

|∇u|2 − 1

[
0 −1
1 0

]
· ∇u,

one of equations (6), and

∂(x, y)
∂(u, v)

=

[
∂(u, v)
∂(x, y)

]−1

,

a consequence of the inverse mapping theorem, results in[
xu xv

yu yv

]
=

(
u2

x + u2
y

)−1
[

ux −uy

uy ux

]
·

 1 0

0
√

u2
x + u2

y − 1

 .
Statement (i) follows.

Proof of (ii). Letting

D =

∣∣∣∣∣∣ ux uy

vx vy

∣∣∣∣∣∣ ,
causes the inverse mapping of

(x, y) 7→
[
u(x, y), v(x, y)

]
to satisfy

D ·
[

xu xv

yu yv

]
=

[
vy −uy

−vx ux

]
,

D3 ·

[
xuu xuv

xuv xvv

]
= −vy

[
vy −vx

−uy ux

] [
uxx uxy

uxy uyy

] [
vy −uy

−vx ux

]
+uy

[
vy −vx

−uy ux

] [
vxx vxy

vxy vyy

] [
vy −uy

−vx ux

]
,

D3 ·

[
yuu yuv

yuv yvv

]
= +vx

[
vy −vx

−uy ux

] [
uxx uxy

uxy uyy

] [
vy −uy

−vx ux

]
−ux

[
vy −vx

−uy ux

] [
vxx vxy

vxy vyy

] [
vy −uy

−vx ux

]
,

We infer that
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D3
(
∂2x
∂u2 −

∂2x
∂v2

)
= vy(v2

x + v2
y)

[
(u2

y − 1)uxx − 2uxuyuxy + (u2
x − 1)uyy

]
+

uy(u2
x + u2

y)
[
(v2

y − 1)vxx − 2vxvyvxy + (v2
x − 1)vyy

]
,

D3
(
∂2y
∂u2 −

∂2y
∂v2

)
= vx(v2

x + v2
y)

[
(1 − u2

y)uxx + 2uxuyuxy + (1 − u2
x)uyy

]
+

ux(u2
x + u2

y)
[
(1 − v2

y)vxx + 2vxvyvxy + (1 − v2
x)vyy

]
,

and conclude thus

∂2x
∂u2 −

∂2x
∂v2 = 0,

∂2y
∂u2 −

∂2y
∂v2 = 0,

as claimed.

Proof of (iii). Any solution to D’Alembert equation is the sum of two waves, one progressive
and the other regressive. Statement (iii) is therefore a consequence of (i) and (ii).

End of proofs.

5 Initial value problems

Let the following ingredients be in hand. First,

x = α(s), y = β(s) (11)

— a parametric representation of a plane curve. Think of it as the initial curve; assume smoothness
and [

dα
ds

(s)
]2

+

[
dβ
ds

(s)
]2

≡ 1,

i.e.

s = arclength.

Second,

s 7→ γ(s) (12)

— a real-valued, smooth function defined on the above curve.
An initial value problem consists in demanding that u obeys the following conditions

u(x, y) = γ(s) and − ux(x, y)
dβ
ds

(s) + uy(x, y)
dα
ds

(s) = 0 (13)

at every point from the initial curve, and

u obeys equation (1) (14)

in a neighborhood of the initial curve.
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As is easy to check, problem (11)-(12)-(13)-(14) is non-characteristic if∣∣∣∣∣dγds
(s)

∣∣∣∣∣ , 1 everywhere; (15)

if ∣∣∣∣∣dγds
(s)

∣∣∣∣∣ > 1 everywhere, (16)

then any relevant solution leaves the initial curve in a hyperbolic status.
Results from the previous section, plus routine manipulations, lead to the following.
Proposition. If condition (16) is in force, the initial value problem (11)-(12)-(13)-(14) has

exactly one hyperbolic solution. Let u be such a solution, and let v be a proper hyperbolic mate —
i.e. the Bäcklund transform of u that obeys

∇v =
1√

|∇u|2 − 1

[
0 −1
1 0

]
· ∇u,

and is such that

v(x, y) = 0

at every point from the initial curve. Then u and v are represented by formulas (10), where
A, B,C,D are given by

√
2

d
ds

A
(
γ(s)
√

2

)
=

dα
ds

(s) −

√[
dγ
ds

(s)
]2

− 1 ·
dβ
ds

(s),

A
(
γ(s)
√

2

)
+ B

(
γ(s)
√

2

)
=
√

2α(s),

√
2

d
ds

C
(
γ(s)
√

2

)
=

√[
dγ
ds

(s)
]2

− 1 ·
dα
ds

(s) +
dβ
ds

(s),

C
(
γ(s)
√

2

)
+ D

(
γ(s)
√

2

)
=
√

2β(s). (17)

Formulas (17) take the following simpler form

[
A(λ)
C(λ)

]
= 1√

2

 1 −
√
κ2 − 1

√
κ2 − 1 1


 α

(√
2
κ λ

)
β
(√

2
κ λ

)  ,
[

B(µ)
D(µ)

]
= 1√

2

 1
√
κ2 − 1

−
√
κ2 − 1 1


 α

(√
2
κ µ

)
β
(√

2
κ µ

)  ,
in the case where

κ = Constant, γ(s) = κ · s

(i.e. the curve in the three-dimensional space, which spans the solution surface, is a helix) and
moreover

|κ| > 1.
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Here is an apropos example.
A nephroid of Huygens is the graph of the following equations

x = (3 cos t − cos 3t)/12,

y = (3 sin t − sin 3t)/12,

t = π · (integer part of s) + 2 arcsin
( √

fractional part of s
)
,

s = arc length

— see [35], for instance. Let α and β be specified accordingly, and let γ be specified thus

γ(s) = 2.0156 · s.

Figure 4 shows the nephroid in question, and the relevant helix above it. Figures 5 and 6 show the
solution u to problem (11)-(12)-(13)-(14) and its mate v, respectively.

Figure 4: View of the initial nephroid and the helix spanning the solution surface.
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Figure 5: View of a hyperbolic solution u to an initial value problem for equation 1.

Figure 6: View of a hyperbolic mate v.
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[3] R.L. Anderson & N.H. Ibragimov, Lie-Bäcklund transformations in applications, SIAM
(1979).

[4] G. Aronsson, A stream function technique for the p-harmonic equation in the plane. Depart-
ment of Mathematics, University of Luleå, 1986-3.

[5] G. Aronsson, Representation of a p-harmonic function near a critical point in the plane.
Manuscripta Mathematica 66 (1986) 73-95.

[6] G. Aronsson, On certain p-harmonic functions in the plane. Manuscripta Math. 61 (1988)
79-101.

[7] G. Aronsson & P. Lindqvist, On p-harmonic functions in the plane and their stream functions.
J. Diff. Equations 74 (1988) 157-178.

[8] R. Bartnik, The existence of maximal surfaces. Miniconference on operator theory and partial
differential equations (Canberra, 1983), 47-51, Proc. Centre Math. Anal. Austral. Nat. Univ.,
5, Austral. Nat. Univ., Canberra, 1984.

[9] R. Bartnik, Existence of maximal surfaces in asymptotically flat spacetimes. Comm. Math.
Phys. 94 (1984) 155-175.

[10] R. Bartnik, Maximal surfaces and general relativity. Miniconference on geometry and partial
differential equations 2 (Canberra, 1986), 24-49, Proc. Centre Math. Anal. Austral. Nat.
Univ., 12, Austral. Nat. Univ., Canberra, 1987.

[11] R. Bartnik, Regularity of variational maximal surfaces. Acta Math. 166 (1988) 145-181.

[12] R. Bartnik & P.T. Chrusciel & O. Murchadha, On maximal surfaces in asymptotically flat
space-time. Comm. Math. Phys. 130 (1990) 95-109.

[13] R. Bartnik & L. Simon, Spacelike hypersurfaces with prescribed boundary values and maen
curvature. Comm. Math. Phys. 87 (1982) 131-152.

[14] L. Bers, Mathematical aspects of subsonic and transonic gas dynamics. Surveys in Applied
Mathematics 3, John Wiley & Sons, 1958.

[15] A. Busemann, Die achsensymmetrische kegelige Überschallströmung. Luftfahrtforshung 19
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[46] C. Rogers & W.F. Shadwick, Bäcklund transformations and their applications. Academic
Press (1982).

[47] A. Romero, Simple proof of Calabi-Bernstein theorem on maximal surfaces. Proc. Amer.
Math. Soc. 124 (1996) 1315-1317.

[48] J. Serrin, Mathematical principles of classical fluid mechanics. Handbuch der Physik, volume
8 (1959), pages 125-263.

[49] M. Umehara & K. Yamada, Maximal surfaces with singularities in Minkowski space.
Hokkaido Math. J. 35 (2006) 13-40.

[50] I. Van de Woesijne, Minimal surfaces of the 3-dimensional Minkowski space. Geometry and
topology of submanifolds II (Avignon, 1988), 344-369, World Sci. Publ., 1990.

[51] D. Zwillinger, Handbook of differential equations. Academic Press, 1997.


